
RISECURE: Metro Transit Disruptions
Detection Using Social Media Mining
And Graph Convolution

Omer Zulfiqar, Yi-Chun Chang, Po-Han Chen, Kaiqun Fu, Chang-Tien Lu,
David Solnick, and Yanlin Li

Abstract In recent years we have seen an increase in the number of public transit
service disruptions due to aging infrastructure, system failures and the regular
need for maintenance. With the fleeting growth in the usage of these transit
networks there has been an increase in the need for the timely detection of such
disruptions. Any types of disruptions in these transit networks can lead to delays
which can have major implications on the daily passengers. Most current disruption
detection systems did not operate in real-time or lack transit network coverage. The
theme of this thesis was to leverage Twitter data to help in earlier detection of
service disruptions. This work involves developing a pure Data Mining approach
and an approach that uses Graph Neural Networks to identify transit disruption
related information in Tweets from a live Twitter stream related to the Washington
Metropolitan Area Transit Authority (WMATA) metro system. After developing
the two different models, a Dynamic Query Expansion model and a Tweet-GCN
to represent the data corpus we performed experiments and comparisons to other
existing models, using two different benchmark datasets, to justify the efficacy of
our models. After seeing the results across both the Dynamic Query Expansion and
the Tweet-GCN, with an average accuracy of approximately 78.9% and 87.3% we
were able to conclude that the graph neural model is superior for identifying transit
disruptions in a Twitter stream and also outperforms other existing models.

Keywords Data mining · Graph convolution · Dynamic query expansion · Web
application · Twitter

These authors contributed equally to this work.

O. Zulfiqar · Y.-C. Chang · P.-H. Chen · K. Fu · C.-T. Lu (�)
Department of Computer Science, Virginia Tech, Northern Virginia Center, Falls Church, VA,
USA
e-mail: omer95@vt.edu; bensonchang@vt.edu; pohan@vt.edu; fukaiqun@vt.edu; ctlu@vt.edu

D. Solnick · Y. Li
Washington Metropolitan Area Transit Authority, Washington, DC, USA
e-mail: dsolnick@wmata.com; yli@wmata.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Özyer (eds.), Social Media Analysis for Event Detection, Lecture Notes in Social
Networks, https://doi.org/10.1007/978-3-031-08242-9_5

111

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08242-9_5&domain=pdf

 66 3973 a 66 3973 a

mailto:omer95@vt.edu

 559 3973 a 559 3973 a

mailto:bensonchang@vt.edu

 1204 3973 a 1204 3973 a

mailto:pohan@vt.edu

 1653 3973 a 1653 3973 a

mailto:fukaiqun@vt.edu

 2181 3973 a 2181 3973
a

mailto:ctlu@vt.edu

 66 4263
a 66 4263 a

mailto:dsolnick@wmata.com

 735 4263 a 735 4263 a

mailto:yli@wmata.com

 158 4612 a 158 4612 a

https://doi.org/10.1007/978-3-031-08242-9_5

112 O. Zulfiqar et al.

1 Introduction

Public Transit Networks are an integral part of the infrastructure for all major
metropolitan cities. Since they are virtually open to everyone, these transit systems
bring in large volumes of daily users or customers. The metro/subway of any city
plays an important role by connecting the suburbs and outskirts of the city to the
main metropolitan area. This makes them one of the popular modes of transportation
for daily commuters. [1]. Back in 2019 the Washington DC Metropolitan Transit
Authority reported of having an average daily rail ridership of around 630,000
[2]. That is approximately 315,000 daily riders on the Metro on a given weekday,
assuming each rider makes a round trip. Disruptions in service can severely
affect these daily commuters and often force them to seek alternative modes of
transportation. This could eventually drive customers away, denting the revenue
generation for the transit agency.

In today’s era of technological advancements, the growing use of social media
applications and platforms allows the users to act as live human sensors. Anyone can
post and report details of events they witness or experience outside in the physical
world [3]. In 2020 it was discovered that almost 500 million Tweets are posted
daily. This extensive daily use, speed and coverage of Twitter makes it a major
social media platform and constantly a major source of data from which topical
information on various events can be extracted. These events are represented by
three main dimensions:

1. Time
2. Location
3. Entity-related information about the event and its participants.

We can extract all this information from the Twitter data and use it to our
advantage. Figure 1 shows a sample of the information Twitter data contains and
how Tweeters can act as surrogates or human sensors.

In our previous papers RISECURE: Metro Incidents And Threat Detection
Using Social Media [1], we presented a tool that leverages Social Media Data
and uses Tweets as surrogates to extract information relevant to any possible
security events/incidents within a Metro system. Since our project started to move
towards a collective disruption identification system we needed to improve our
event extraction technique by using a more sophisticated model. In this paper we
develop a Graph Neural Network based approach for text classification and event
extraction. The graph neural network learns features by capturing information from
it’s neighbors [4]. Our proposed model involves building a single diverse text graph
for the whole training corpus. The graph is developed by using the corpus from a
pre-existing disruptions data set. This graph contains both word nodes and Tweet
nodes allowing us to explicitly model the global word co-occurrence. After the
graph is built it is fed into a convolutional neural network architecture which follows
an approach similar to the work of Kipf et al.[4]. This architecture allows the

RISECURE: Metro Transit Disruptions Detection Using Social Media Mining. . . 113

Fig. 1 An example of how Tweeters can be used as human sensors and the disruption related
information contained within Twitter data

model to scale linearly in the number of graph edges by learning the hidden layer
representations that encode both local graph structure and features of nodes [4].

We will provide an overview of both Dynamic Query expansion and GCN
approaches in this paper. We use the same Geo-tagging technique as in our previous
paper [1]. Before we integrate a new model into our system we compare the
approach with other existing text classification techniques to perform a benchmark
evaluation. The major contributions of this paper are:

• Social Media Mining: Acquisition of Twitter data to store data on the events and
use it to extract candidate Tweets using keywords detection, and using Dynamic
Query Expansion to track any new and emerging chatter on the incident via
Dynamic Query Expansion.

• Graph Convolution: We Develop and implement a GCN model to classify
disruptions from Twitter data and their comparative analysis. This involves
building a text graph to learn feature information from the available corpus. The
proposed approach is discussed after the overview of our current system, and
compared to other forms of text classification.

• Web and Mobile Platform Generation: A convenient provision of the Data
Mining model providing users with an effective visualization of the location of
the event along with any necessary information in the form of a timeline.

114 O. Zulfiqar et al.

2 Related Work

There has been a lot of work done in the field of text classification and event
extraction from social media data.

Similar to our work, Ji et al. [5] approach the disruption detection problem
in transit service using Twitter data. However, they utilized a multi-task learning
framework in their approach. They developed a supervised model which utilizes
unique metro specific assumptions in a feature space, reflected in the two kinds
of regularizers proposed in the model. They proposed an algorithm based on the
ADMM framework which divides the problem into a set of sub-problems which are
solved using block coordinate descent and proximal operators.

Gu et al. [6] developed a technique to mine Tweets to extract traffic incident
information on highways and arterials. The developed a dictionary of important
keywords and used combinations of those keywords to detect traffic incident
information. Tweets were mapped to a binary vector in a feature space formed
by the dictionary and labeled as incident related or not. If they were labeled as
traffic incident related, they were the geo-coded and further classified into the
respective incident classes. Zhang et al. [7] assessed the use of Tweets for traffic
incident awareness. They developed a Latent Dirichlet Allocation (LDA) model and
document clustering technique to model incident-level semantic information and
also applied spatial point analysis to explore certain spatial patterns.

Traditional forms of text classification use various feature engineering tech-
niques. Several techniques build text representations after learning word embed-
dings [8–10]. With development of neural networks people have used Convolution
Neural Networks for sentence classification [11] and Recurrent Neural Networks
for text classification using multi task learning frameworks [12]. There have
been several studies where various researchers tried to develop a more general
architecture similar to a CNN model that could work on arbitrary graphs. One such
implementation is presented by Kipf et al. [4], who were able to use a GCN to
outperform other techniques in several tasks including text classification, machine
translation etc.

3 System Overview

In this section, we illustrate the system architecture of the RISECURE application,
as pictured in Fig. 2. The GCN model integrated application follows a similar
architecture, where instead of the query expansion module we integrate our GCN.

RISECURE: Metro Transit Disruptions Detection Using Social Media Mining. . . 115

Fig. 2 System architecture

3.1 Data Acquisition

To avoid the limitation of Twitter’s API, the tool GetOldTweets3 was used to collect
the historic data samples. Since this study is dealing with real-time events, we will
be using the Twitter Streaming API through the Python library called Tweepy for
the system. Tweepy gives us access to real-time public Tweets by setting up query
parameters based on our needs. For each city or metropolitan area there are different
slogans, catchphrases, hashtags and influential users. Figure 1 previously shows a
sample of such Tweets. We can use these local parameters to our advantage to help
us capture the information we need. To make sure to also acquire a generalized
stream of Tweets related only to WMATA, a list of specific WMATA related
keywords were passed to the GetOldTweets API and Tweepy streamer. This list
mostly includes the name of the stations and station localities along with their
abbreviations to accommodate for variant Tweeting styles. This helps to refine the
incoming data by removing unnecessary noise from the stream. Figure 3 shows a
word cloud of the initial query used to acquire WMATA related Tweets.

The acquired data is first stored in AWS DynamoDB. Since we will be dealing
with real-time data, DynamoDB is ideal for this study. A DynamoDB stream can
be setup, which makes change data capture from the database available on an event
stream. This can also be combined with AWS Elasticsearch to index our data and to
perform any real-time analytics on the data, if necessary [13]. A lambda function can
be incorporated as a micro-service to execute the data pre-processing script every
time new data is acquired. Figure 4 shows the entire data pipeline.

Once the data pre-processing script is triggered the Tweet(s) will then be cleaned
and pre-processed. Tweets can contain emotions, hashtags or special characters
which makes them complex sentences. So before we pass them to our model(s)

116 O. Zulfiqar et al.

Fig. 3 Initial WMATA Twitter API Query

Fig. 4 Data Pipeline

we have to use textual mining techniques to clean them up. This can be done by
using the Natural Language Toolkit library in python to remove non-alphanumeric
characters and stop words and tokenize the Tweets. The python NLP library called
SpaCy is also utilized for this pre-processing step(s).

For the Dynamic Query Expansion model the simple tokenized list set of Tweets
is passed to the algorithm. For the GCN the Tweets were annotated before training.
We used the WMATA daily service reports as the ground truth for identifying and
labelling disruptions related Twitter data. We had a total of 7 different disruption
classes. These were operational, mechanical, track, security, environmental,medical
and non-disruption.

RISECURE: Metro Transit Disruptions Detection Using Social Media Mining. . . 117

3.2 Application Server

This is the core server component of the application. We use AWS and MongoDB to
help integrate the data acquisition module and the backend database. After the data
has been acquired, the AWS Lambda function will trigger and send an API request
to our backend service to update the data in our database. For the backend, we use
Express.js with node.js as a web server framework following REST API principles.

3.2.1 Application and Mobile Interface

This is the major component of user interactions and operations. The web appli-
cation was built based on the React.js framework and Google Map API. Besides,
we use Progressive web application(PWA) to construct our mobile app. PWA can
be installed on the user’s device much like native apps and provide cross-platform
compatibility for iOS and Android. The disruption incidents are accessible from the
UI through 3 major components: the real time panel, the station marker and the alert
notification pop ups.

3.2.2 Real Time Incidents Panel

The real time panel provides the user with the latest information about any occurring
incidents at any station. Tweets related to incidents are collected by timestamp and
are used to construct a real-time storyline. Each incident related Tweet is tagged
under a specific category which is displayed on the yellow label. The user is also
provided a link to the original Tweet itself. Figure 5 provides a concept of the real-
time panel.

3.2.3 Alert Notification System

The alert notification system allows users to subscribe to multiple stations and
the system provides an immediate alert notification when an incident is detected.
The alert notification system also updates the latest follow-up information once the
authority validates the authenticity of the event. Figure 6 illustrates the scenario of
our application pushing an alert notification for first event-related Tweets posted and
then the verified event notification.

3.2.4 Station Marker

Station markers with a red warning sign indicate a disruption at the station due to
a security incident. Clicking on the station marker will display two small pop ups.

118 O. Zulfiqar et al.

Fig. 5 Real Time Incidents Panel

Fig. 6 Alert notification system

One shows the details of the station itself and the other displays a timestamped
storyline which contains events specific to that particular station. This allows users
to navigate to the station of their choice on the map and stay updated with any recent
incidents at that station. Figure 7 shows a concept of this component.

RISECURE: Metro Transit Disruptions Detection Using Social Media Mining. . . 119

Fig. 7 Station event list

4 Methodology

This section will go over the details of the two proposed models for this study.

4.1 Dynamic Query Expansion

After the Twitter stream returns a pool of WMATA related Tweets, a second query
of keywords is used to filter out Tweets that maybe related to disruption. This
query consists of keywords that were found to be able to identify incidents that
may cause disruptions in the service or jeopardize the safety of the commuters and
the infrastructure of the system. Table 1 shows the keywords used to identify these
Tweets. This query then returns Tweets similar to the ones shown in Fig. 1. Once a
disruption related Tweet is found, the dynamic query algorithm is run on that Tweet
to track incident and retrieve updates.

120 O. Zulfiqar et al.

Table 1 Keywords used for
disruption query

Disruption keywords

Police

Malfunction

Slowdown

Delay

Brake

Fire

Emergency

Bypass

Single track

Uncoupled

Injury

Crash

Struck

Investigation

Disabled

Power outage

Operational

Door

Signal

Rush hour

Dynamic Query Expansion evaluates inputs and reformulates the query result to
improve retrieval performance. After acquiring the candidate Tweets, we can use
data to extract the representative keywords for a specific threat event. This helps
keep track of the emerging information for the event as it progresses. Besides, we
select some high-frequency keywords, as shown in Table 1, as our initial seed query
S based on analyzing the historical data of threat-related Tweets.

RISECURE: Metro Transit Disruptions Detection Using Social Media Mining. . . 121

To select the representative keywords, we use the algorithm based on Dynamic
Query Expansion (DQE) techniques [14, 15]. Given a time-ordered sequence of
Tweets 〈T0, T1, . . . , Tt 〉 and Seed Query S, we could retrieve the new expanded
query Q to represent this event. Fk is the feature node. W is the set of weights for
nodes where higher weights denote a higher degree of relation between the node
(either a Tweet or a feature) and threat-related theme. We can calculate the weight
ofFk by InverseDocument Frequency(IDF) and weight of T(k−1). C is the adjacency
matrix.

For each iteration, dynamic query expansion compares the minimum weight of
the related Tweet node and the maximum weight of unrelated Tweet node, selecting
the one with a higher score and putting it in the result. After the kth iteration, it
converges to the stable representative keywords. After the stable status is reached,
we can assume that the highest weighted keywords could describe the event. We
retrieve this result and represent it on our application. The dynamic query expansion
for the Pentagon Metro Stabbing Case study is shown in Fig. 8. After more event-
related Tweets are collected, we can see how keywords transform from an initial
query with equal weight to the expanded query with more representative keywords.
The algorithm detected an initial tweet of an African American male being stabbed
at Pentagon Station around 9 AM using the initial query. Over the course of the
next few hours as new information comes in, the query expansion is at work. We
see the word Pentagon add to the expanded query after the initial tweet, helping us
identify the location of the incident. As more and more data comes in we also collect
information about the disruptions caused by the incident. We see the algorithm
collect information about delays on the blue and yellow lines due to an ongoing
police investigation.

Fig. 8 Dynamic query expansion for pentagon metro stabbing case study

122 O. Zulfiqar et al.

4.2 Graph Convolution

Graph Neural Networks have been commonly used for classification techniques
lately. A GNN is a model that is built on the concepts of Graph Theory. A graph is
a type of data structure that allows one to easily represent the relationships between
different types of data it contains through nodes and edges. In the graph, a data
point is represented as a node and edges connect or link multiple data points. The
weights of the edges and distances between nodes define the relationship amongst
the data. This text classification experiment that we are performing turns into a node
classification for our proposed approach.

In text classification the nodes represent individual words or documents and the
edges represent the word co-occurrence in the document or corpus depending on the
type of edge. The graph is translated into a feature network and is represented as an
Adjacency Matrix. For a Graph Convolutional Network the convolution operation
is similar to that of a regular Convolutional Neural Network where the model
learns the features by inspecting neighboring nodes in the graph. The GCN will
take a weighted average of neighbor node features, including itself. The resulting
feature vector is then passed through a neural network for training which learns the
relationship amongst the data for classification. This neural network then returns a
final vector containing the result of the classification. Rather than just identifying
keywords like the dynamic query expansion technique, the GCN has a contextual
learning ability which gives us the advantage against other techniques.

The GCN model here in (Fig. 9) is responsible for gleaning insight from the
collected disruptions data and identifying disruptions in a live Twitter stream. It is
setup, trained and developed in the following manner:

1. The training data is first cleaned and pre-processed to remove any unnecessary
non alphabetic characters.

2. The word embedding or graph is generated from the training corpus. The graph
can contain word nodes and Tweet nodes.

Fig. 9 GCN setup

RISECURE: Metro Transit Disruptions Detection Using Social Media Mining. . . 123

3. This graph is then passed to a neural network which is trained by learning the
relationships in the graph and then we test our model.

4. The final model is then tested by comparing it to other pre-existing Graph based
text classifiers and commonly used text classification techniques. It is also tested
for affect on the accuracy by tuning the parameters.

4.2.1 Building The Graph

The main component of this Tweet-GCN is the word embedding developed to train
the model. A large and diversified text graph is built which contains word nodes
and Tweet nodes. This allows us to explicitly model the global word co-occurrence
so that graph convolution can be easily performed. In this graph, the number of
nodes |V | is the total number of Tweets plus the total number of unique words
in the training corpus. This is just the total corpus size combined with the total
vocabulary size after the preprocessing stage. A feature matrix M is set as and
identity matrix (M = I). This means that every word and Tweet is represented
as a one hot vector as the input for the Tweet-GCN. A one hot vector is just
representation of categorized variables in the form of binary vectors. This helps
the machine recognize categorized data much better.

The edges are built among nodes based on two properties:

1. Tweet to Word Edges: Based on the word occurrence or frequency in Tweets.
2. Word to Word Edges: Based on the word co-occurrence or frequency in the

entire corpus.

The weight of an edge between a Tweet node T and word node W is the term
frequency inverse Tweet frequency, which is just the TF-IDF of the word W in the
Tweet T . Point-wise mutual information(PMI) was used to calculate the weights for
word to word nodes. We want to quantify the likelihood of the co-occurrence of two
words and PMI helps with that. PMI is a popular measure used for word associations
to calculate the weight between two word nodes. Using PMI instead of only using
word co-occurrence helped achieve better results in the experimentation and testing
stages of the model. The weight of the edge Emn between node m and node n is
defined as follows:

Emn =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

PMI(m, n) m, n are words, PMI(m, n) > 0

TF-IDFmn m is Tweet, nis a word

1 m = n

0 otherwise

124 O. Zulfiqar et al.

The PMI value for a word to word edge Emn is calculated using the following
equations:

PMI(m, n) = log

(
p(m, n)

p(m) ∗ p(n)

)

(1)

p(m, n) = #win(m, n)

#win
(2)

p(m) = #win(m)

#win
p(n) = #win(n)

#win
(3)

where #win(m) or #win(n) represents the number of sliding windows in the corpus
that contain the words m and n respectively. #win(m, n) is the number of sliding
windows in the corpus that contains both m and n, and #win represents the total
number of sliding windows that are present in the corpus. The results from the PMI
equation tell us about the semantic correlation of the two words in the corpus. A
positive value indicates a high correlation, a negative value indicates little or no
correlation and a value of 0 indicates that the two are statistically independent. Due
to this nature, only edges with a positive PMI value were added to the graph.

4.2.2 Network Architecture

Once the graph has been built, it is fed into a multi-layer neural network architecture
which follows a similar approach to Kipf et al. [4]. This architecture performs
convolutions directly on the graph by inducing embedding vectors of nodes based
on the properties of their neighboring nodes. The graph G can be represented using
adjacency matrix A and degree matrix D. Using a single layer of convolution
will allow the GCN to only capture the information from its immediate neighbors.
Stacking up multiple layers gives the GCN the ability to obtain information over
larger neighborhoods in the graph. For a single layer architecture, the new d

dimensional node feature matrix X is computed as:

X
(1)
d = φ(Â ∗ X ∗ W0) (4)

where Â is a re-normalized adjacency matrix and W0 is the weight matrix. φ is a
rectifier activation function (ReLU) where φ(x) = max(0, x). For a multi-layered
architecture, X is computed as:

X
(i)
d = φ(Â ∗ X(i) ∗ Wi) (5)

where X(0) = X and i denotes the number of the current layer. For this model a two
layer architecture was used. The word and Tweet node embeddings in the second

RISECURE: Metro Transit Disruptions Detection Using Social Media Mining. . . 125

layer have the same size as the labeled data set. These embeddings are then passed
to a softmax classifier function:

ypred = sof tmax(Â ∗ ReLU(ÂXW(0))W(1)) (6)

where W0 is an input to hidden layer weight matrix for any hidden layer with H

feature maps and W(0) is the weight matrix for the hidden to output layer. The loss
function is defined as the multi class cross entropy over the entire labeled data set.

LcrossEntropy = −
Co∑

i=1

v0 ∗ log(ypred) (7)

Co represents the number of possible output classes, v0 denotes one-hot encoded
representation of the ground truth label and ypred is the is the probability of
the predicted label for the Tweet. The weight parameters were W(0) and W(1)

were trained by performing batch gradient descent using the full data set for each
iteration. The only downside to this approach is that it requires a large amount of
memory to train the model. The two layer GCN allows for message passing between
nodes that are two edges or steps apart from each other. So even though there are
no predefined Tweet to Tweet edges in the graph, the two layer GCN allows pairs of
Tweets to exchange information between each other.

Figure 10 shows an overview of the Tweet-GCN model. Nodes beginning with
T are Tweet nodes and the rest are word nodes. Tweet to word edges are denoted
by the solid black lines and word to word edges are denoted by solid red lines.
E(x) here denotes the embedding representation for x. For example, E(track) is
the embedding representation of the word track. The different colors here indicate
the different classes of disruptions in the data set. Only four classes have been shown
here to avoid a cluttered schematic.

Fig. 10 Overview of Tweet-GCN

126 O. Zulfiqar et al.

5 Experiment and Results

Our data set included 60000 disruption incidents from between 2012–2019.We also
collected data fromWMATA service reports which was used as the ground truth for
labeling our Twitter data.

5.1 Benchmark Evaluations

We fine tuned our parameters accordingly to achieve the best results in each case,
which are discussed later. For our GCN we started by setting the learning rate as
0.02„ dropout rate to 0.5, the embedding size of the convolution layer to 200 and the
window size to 15. 10% of our training data was randomly selected as our validation
set. We used the following baseline models:

1. TFIDF +Regression: Look at a basic bag of words(BOW)model with a Logistic
Regression classifier.

2. LSTM: The LSTM model implemented by Liu et al. [12]. It uses the previous
hidden state as the representation of the entire text, with and without pre-trained
word embeddings.

3. CNN: Using the Kim et al. [11] implementation of the Convolutional Neural
Network which uses max pooling on the embeddings to generate the text
representations. The non-static CNN approach is used, which uses pre-trained
word embeddings.

4. Graph CNN-C: A graph CNN model by Defferrard et al. [16] that operates
convolutions over word embedding similarity graphs by utilizing a Chebyshev
filter.

5. Graph CNN-F: A graph CNN model by Henaff et al. [17] which is similar to
Graph-CNN C but instead utilizes a Fourier filter.

For the Tweet-GCN we used the optimal parameters based on the results of our
parameter tests and for the baselines the default parameters were used as discussed
in the papers of their original implementations along with the pre-trained 300
dimensional Stanford NLP GloVe word embedding where ever necessary. 10%
of the training set was randomly selected as the validation set and following the
approach of Kipf et al. [4] both GCNs were trained for a maximum of 200 epochs
with early stopping enabled for no changes in validation loss for 10 consecutive
epochs.

Tweet-GCN Setup A dimension size of 200 was set, a window size of 12, a
learning rate of 0.02, dropout probability of 0.5 and an L2 regularization or weight
decay of 0.

Four different metrics were used to evaluate the performance of the proposed
approaches against the baselines. These were accuracy, precision, recall and F-
score. The weighted average of all four metrics across 100 Runs for each model was

RISECURE: Metro Transit Disruptions Detection Using Social Media Mining. . . 127

reported. The accuracy measure is one of the most common metrics for evaluation.
Generally, higher the accuracy is, the better the classifier is at identifying class
labels. Precision gives us a measure of the relevant data points by identifying what
proportion of the predicted positives is truly positive. Recall gives us a measure of
how accurately the model is able to identify the relevant data points by telling us
what proportion of true positives have been correctly classified. Most of the times
there is a trade-off between the precision and recall scores. Sometimes these values
may conflict, so they must be considered comprehensively. For this problem we
would prefer to have a good value for both measures since we want to be able to
identify as many disruptions as possible as precisely as possible. That is where the
F-score comes in, which is the harmonic mean of the precision and recall. The F-
score also does a better job at describing models dealing with class imbalance in
multi-class classification problems.

From Table 2 it can be seen that all the graph based models outperform the
rest of the models. This is likely due to the characteristics of the graph structure
enabling the word nodes to learn the representations more accurately. Something
which is impossible for the other traditional models. We see lower accuracy results
and testing scores for the Dynamic Query Expansion model compared to the
baselines. The Dynamic Query Expansion and keyword extraction model does not
have a learning ability like the graph based models and other deep learning models
therefore it is at a disadvantage when it comes to learning the semantic relationship
among the data and capturing relevant disruptions data within the stream. The
Tweet-GCN performs well because the graph is able to capture both Tweet-word
relations and global word-word relations and because the label information of the
Tweet nodes can be passed to the adjacent word nodes and relayed to other word
and document nodes that are at most two steps away. This allows the Tweet label
information to be propagated throughout the graph.

Graph CNN-C and Graph CNN-F use similar graph models as ours but the word
nodes are connected over larger windows without weighted edges. Due to the lack
of trainable edges those models are then unable to learn the significant relationships
between different words. We also notice that the CNN and LSTM models provide

Table 2 Test scores for disruption classification with for the twitter disruptions data set: the results
are the average of 100 runs for each model

Model Accuracy Precision, Recall, F-Score

Logistic Regression + TF-IDF 0.8101 ± 0.0018 0.81, 0.80, 0.81

LSTM 0.7743 ± 0.0087 0.77, 0.78, 0.78

LSTM(GloVe) 0.8237 ± 0.0163 0.81, 0.82, 0.82

CNN(GloVe) 0.7781 ± 0.0048 0.78, 0.80, 0.79

Graph CNN-C 0.8204 ± 0.0032 0.82, 0.78, 0.80

Graph CNN-F 0.8371 ± 0.0015 0.83, 0.84, 0.83

Dynamic Query Expansion 0.7892 ± 0.0153 0.75, 0.79, 0.77

Tweet-GCN 0.8726 ± 0.0021 0.87, 0.86, 0.87

128 O. Zulfiqar et al.

satisfactory results on both datasets, but lack in their contextual information learning
ability compared to the our GCN. However, both those models use pre-trained word
embeddings while our GCN only uses the information provided to it by the input
corpus.

5.2 Parameter Testing

We also performed tests by varying the parameters of our GCN.

5.2.1 Size of Sliding Window

In Fig. 11 we have the results from varying the sizes of sliding windows in the
model.

We see the test accuracy be the highest for a window size of 15, and the accuracy
begins to decrease when the window size becomes larger than that. Small window
sizes are unable to generate enough word co-occurrencewhile information too large
window sizes are may add extra edges to nodes that might not be closely related [4].
Since Tweets are a form of micro-blogs or short text this behavior is understandable,
suggesting that a small window size may not be able to capture enough information

Fig. 11 Accuracy with varying window sizes

RISECURE: Metro Transit Disruptions Detection Using Social Media Mining. . . 129

Fig. 12 Accuracy with varying embedding sizes

where as a large window size may capture extra information by adding extra edges
between nodes that might not be closely related.

5.2.2 Size of Embedding Dimension

Figure 12 shows the test accuracy results with varying embedding sizes. We
observed trends similar to our earlier test with the sliding windows. For small
dimensions, the embeddings may not disseminate throughout the graph while large
embeddings increase training time and do not change the our results by much. We
found a dimension size of 200 to be optimal for both data sets.

5.2.3 Size of Training Data

To avoid a cluttered graph, we selected the best individual performing models to
see how changing the size of our labeled training data effects the models. Figure 13
shows the test accuracy results of these tests on 1%, 5%, 10%, 15%, 20% and 25%
of the Twitter training data set.

It can be seen that Tweet-GCN performs better by achieving higher test accura-
cies throughout for the partial training set. We can see the Tweet-GCN achieves
an accuracy of 0.8132 ± 0.0132 for only 25% of the training data set. These
results are even higher than those of some baseline models when they were trained

130 O. Zulfiqar et al.

Fig. 13 Effect of size of Twitter training data on model performances

using the entire training set. These results suggest that the proposed GCN model
perform reasonably well with a limited label rate and can spread and preserve
label information within the graphs giving themselves the upper-hand at identifying
disruption data.

From the results of our experiment we can see that our GCN model is able to
achieve pretty good test results for classifying WMATA related disruptions within
Twitter data. However there are still some limitations with the GCN when it comes
to unlabeled information in the training data. Overcoming this hurdle will be part of
some future work we look to accomplish.

6 Conclusion

RISECURE is an open-source and automated system that is capable of detecting
transit disruptions by using Social Media data mining and deep learning techniques.
We proposed two approaches; Dynamic Query Expansion and Tweet-GCN. The
effectiveness of our proposed approaches is displayed through benchmark evalua-
tions against other baseline models. We saw the Tweet-GCN give us the best results
for identifying disruptions with an overall accuracy of 87.3%, whereas the Dynamic
Query Expansion model delivered the lowest scores with an overall accuracy of
78.9%. However, the Tweet-GCN consumes a lot of memory due to the high number
of edges in the corpus level graph. For future we will look to modify the model to
solve this issue. For real-world deployment in transit systems such as metro rails, our
proposed approach can serve as a supplementary resource to aid in swift disruption
detection and, gain situational awareness. We foresee a great potential to take this

RISECURE: Metro Transit Disruptions Detection Using Social Media Mining. . . 131

platform to a higher level where it can help improve the rider experience for the
public transit systems.

References

1. Zulfiqar O, Chang Y-C, Chen P-H, Fu K, Lu C-T, Solnick D, Li Y (2020) Risecure: metro
incidents and threat detection using social media. In: Proceedings of the 2020 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

2. Metrorail ridership grew by 20,000 trips per weekday in 2019 (2020). https://www.wmata.com/
about/news/2019-Metrorail-ridership.cfm

3. Zheng Y, Capra L, Wolfson O, Yang H (2014) Urban computing: concepts, methodologies,
and applications. ACM Trans Intell Syst Technol 5:13838–13855

4. Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks.
CoRR abs/1609.02907. arXiv:1609.02907

5. Ji T, Fu K, Self N, Lu C-T, Ramakrishnan N (2018) Multi-task learning for transit service
disruption detection. In: Proceedings of the 2018 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining (ASONAM). IEEE, New York, pp. 634–
641

6. Gu Y, Qian S, Chen F (2016) From twitter to detector: Real-time traffic incident detection
using social media data. Transportation Research Part C: Emerging Technologies 67:321–342.
https://doi.org/10.1016/j.trc.2016.02.011

7. Zhang S (2015) Using twitter to enhance traffic incident awareness. In: Proceedings of the
2015 IEEE 18th International Conference on Intelligent Transportation Systems, pp 2941–
2946. https://doi.org/10.1109/ITSC.2015.471

8. Le Q, Mikolov T (2014) Distributed representations of sentences and documents. In: Interna-
tional Conference on Machine Learning. PMLR, pp 1188–1196

9. Joulin A, Cissé M, Grangier D, Jégou H et al (2017) Efficient softmax approximation for gpus.
In: International Conference on Machine Learning. PMLR, pp. 1302–1310

10. Tang J, Qu M, Mei Q (2015) Pte: Predictive text embedding through large-scale heterogeneous
text networks. In: Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp 1165–1174

11. KimY (2014) Convolutional neural networks for sentence classification. CoRR abs/1408.5882.
arXiv:1408.5882

12. Liu P, Qiu X, Huang X (2016) Recurrent neural network for text classification with multi-task
learning. In: Twenty Fifth International Joint Conference on Artificial Intelligence

13. Gurreiro M, Megler V (2020) Detect change points in your even data stream using Amazon
Kinesis Data Streams, Amazon DynamoDB and AWS Lambda. Amazon, Washington

14. Zhao L, Chen F, Dai J, Hua T, Lu C-T, Ramakrishnan N (2014) Unsupervised spatial event
detection in targeted domains with applications to civil unrest modeling. PloS One, 9(10),
e110206

15. Khandpur RP, Ji T, Ning Y, Zhao L, Lu C-T, Smith ER, Adams C, Ramakrishnan N (2017)
Determining relative airport threats from news and social media. In: Twenty-Ninth IAAI
Conference

16. Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional neural networks on graphs
with fast localized spectral filtering. CoRR abs/1606.09375

17. Henaff M, Bruna J, LeCun Y (2015) Deep convolutional networks on graph-structured data.
CoRR abs/1506.05163

 1904 908 a 1904 908
a

https://www.wmata.com/about/news/2019-Metrorail-ridership.cfm
https://www.wmata.com/about/news/2019-Metrorail-ridership.cfm
https://arxiv.org/abs/1609.02907

 -42 1904 a -42 1904 a

https://doi.org/10.1016/j.trc.2016.02.011

 134 2153 a 134 2153 a

https://doi.org/10.1109/ITSC.2015.471
https://arxiv.org/abs/1408.5882

	RISECURE: Metro Transit Disruptions Detection Using Social Media Mining And Graph Convolution
	1 Introduction
	2 Related Work
	3 System Overview
	3.1 Data Acquisition
	3.2 Application Server
	3.2.1 Application and Mobile Interface
	3.2.2 Real Time Incidents Panel
	3.2.3 Alert Notification System
	3.2.4 Station Marker

	4 Methodology
	4.1 Dynamic Query Expansion
	4.2 Graph Convolution
	4.2.1 Building The Graph
	4.2.2 Network Architecture

	5 Experiment and Results
	5.1 Benchmark Evaluations
	5.2 Parameter Testing
	5.2.1 Size of Sliding Window
	5.2.2 Size of Embedding Dimension
	5.2.3 Size of Training Data

	6 Conclusion
	References

