
Journal of King Saud University – Computer and Information Sciences 34 (2022) 4729–4742
Contents lists available at ScienceDirect

Journal of King Saud University –
Computer and Information Sciences

journal homepage: www.sciencedirect .com
Detecting anomalous traffic behaviors with seasonal deep Kalman filter
graph convolutional neural networks
https://doi.org/10.1016/j.jksuci.2022.05.017
1319-1578/� 2022 The Authors. Published by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail addresses: yansh93@vt.edu (Y. Sun), kevinlu@vt.edu (Y.-C. Lu), Kaiqun.

Fu@sdstate.edu (K. Fu), fanglanc@vt.edu (F. Chen), clu@vt.edu (C.-T. Lu).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier
Yanshen Sun a,⇑, Yen-Cheng Lu a, Kaiqun Fu b, Fanglan Chen a, Chang-Tien Lu a

aDepartment of Computer Science, Virginia Tech, VA, USA
bDepartment of Computer Science, South Dakota State University, SD, USA

a r t i c l e i n f o
Article history:
Received 20 January 2022
Revised 25 May 2022
Accepted 26 May 2022
Available online 29 May 2022

Keywords:
Traffic forecasting
Spatiotemporal fusion
Multi-granular seasonal feature
Graph neural network
Anomaly detection
a b s t r a c t

Anomaly detection over traffic data is crucial for transportation management and abnormal behavior
identification. An anomaly in real-world scenarios usually causes abnormal observations for multiple
detectors in an extended period. However, existing anomaly detection methods overly leverage the single
or isolated feature interdependent contextual information in anomalies, inevitably dropping the detec-
tion performance. In this paper, we propose S-DKFN (Seasonal Deep Kalman Filter Network), to identify
abnormal patterns with a long duration and wide coverage. S-DKFN models traffic data with a graph and
simultaneously investigates the spatial and temporal features to hunt abnormal behaviors. Specifically, a
dilation temporal convolutional network (TCN) is used to merge the multi-granular seasonal features and
a graph convolution network (GCN) to extract spatial features. The outputs of TCN and GCN are then fed
to long-short term models (LSTM) and merged by Kalman filters for denoising. An encoder-decoder mod-
ule is introduced to predict traffic attributes with seasonal features. The mean squared errors (MSE) of the
predictions are considered the anomaly scores. Experimental results on two real-world datasets show
that our proposed S-DKFN framework outperforms the state-of-the-art baseline methods in detecting
anomalies with long-duration and wide-coverage, especially its ability to detect accidents.
� 2022 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Intelligent transportation systems (ITS) aim to improve the
level of utilization of road networks under the limited traffic infras-
tructures, which focuses on relieving traffic congestion and reduc-
ing the risk of traffic incidents. Numerous spatiotemporal traffic
data are being produced every day with the growing number of
wireless sensors, which provides the raw material for tracking
the traffic status and mining significant insights about abnormal
behaviors such as traffic jams and accidents. Recently, an increas-
ing number of data-driven based applications have been devel-
oped, including traffic monitoring (Barbagli et al., 2011), traffic
flow forecasting (Guo et al., 2019; Yu et al., 2021), traffic routing
(Megalingam et al., 2011), and traffic anomaly detection (Liu
et al., 2011). Indeed, traffic anomaly detection has been becoming
the most significant issue due to the fact that traffic anomalies may
be the cause of most of the disruptions in freeway traffic flow.

Anomaly detection, in general, aims to identify data instances
that exhibit unexpected behaviors. This technique can capture
the traffic patterns in large-scale datasets and detect potentially
informative or actionable insights that typically remain undiscov-
ered. More specifically, the anomalies in the traffic sensor report-
ing could signify various underlying issues, such as traffic
accidents, signal failures, traffic congestion, sensor failures, and
unknown issues that require further investigation (Djenouri
et al., 2019). Numerous studies have focused on specific traffic
anomalies introduced by occasional activities (Liu et al., 2011;
Pang et al., 2021; Pang et al., 2013), and the others have focused
on recurring traffic anomalies (Chow et al., 2014). According to a
recent survey on methods for detecting traffic anomalies
(Djenouri et al., 2019), this field of study is still in its infancy,
and additional research utilizing, for example, computational intel-
ligence, optimization, and high-performance computing, is needed.

Traditional traffic modeling methods focus on capturing tempo-
ral dependencies. Techniques such as Auto-Regressive Integrated

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2022.05.017&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jksuci.2022.05.017
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:yansh93@vt.edu
mailto:kevinlu@vt.edu
mailto:Kaiqun.Fu@sdstate.edu
mailto:Kaiqun.Fu@sdstate.edu
mailto:fanglanc@vt.edu
mailto:clu@vt.edu
https://doi.org/10.1016/j.jksuci.2022.05.017
http://www.sciencedirect.com/science/journal/13191578
http://www.sciencedirect.com

Y. Sun, Y.-C. Lu, K. Fu et al. Journal of King Saud University – Computer and Information Sciences 34 (2022) 4729–4742
Moving Average (ARIMA) (Ahmed and Cook, 1979), Support Vector
Regression (SVR) (Smola and Schölkopf, 2004), and deep learning
based approaches like Recurrent Neural Networks (RNNs)
(Rumelhart et al., 1985) and its modified version, Gated recurrent
units (GRU) (Cho et al., 2014) and long short term memory (LSTM)
(Hochreiter and Schmidhuber, 1997) have been widely applied
with their inherent strengths in modeling time series. However,
none of these methods can handle the intrinsic geographic depen-
dencies in traffic data.Studies have extended the idea of convolu-
tional networks to graph-structured data by applying the
convolution operators over the edges and nodes of the graphs
(Kipf and Welling, 2017). Yang et al. (2020) presented a robust
graph convolutional network (GCN)-based approach for person
re-identification in videos. Valada and Burgard (2017) proposed a
robustness-aware training approach for terrain detection. Ma
et al. (2021) provided a comprehensive review of the deep learning
techniques for graph anomaly detection. These approaches can be
further applied to modeling spatial dependencies, and thus
becomes a valuable solution for capturing the spatiotemporal pat-
terns in traffic data. Recently, spatiotemporal modeling techniques
have attracted attention in the traffic and transportation research
domain. Many spatiotemporal modeling approaches have been
presented, but most of them are not designed to handle the large
variances that may be introduced by traffic anomalies. As shown
in 1, distinguishing traffic incidents from regular jams is a chal-
lenging task as the features exhibited by jams and accidents usu-
ally show similar patterns. It is obvious that the locations of the
accident #3547 on the left and #3780 on the bottom and the
speeds of traffic jam and accident both lead to drops. Therefore,
it is difficult for traditional methods that only consider speed fea-
tures to distinguish the differences between jams and accidents,
that is, due to masking and swamping effects (Bendre, 1989),
anomalies can often affect the fitting process of a model, thus caus-
ing it to capture a biased pattern.

The challenges of anomaly detection in traffic data include the
following: (1) Modeling spatiotemporal dependencies and capturing
abnormal patterns. Most of the existing anomaly detection models
focus on temporal relations while ignoring the spatial patterns of
anomalies, resulting in a large amount of valuable spatial informa-
Fig. 1. Speed drops of regular traffic congestion against an accident. Accident #3547 an
surrounding sensors (blue dots).

4730
tion lost. For example, an incident (within the light blue circle in
Fig. 1) often triggers multiple neighbour detector anomalies, whose
pattern changes can provide more comprehensive information for
anomaly detection. (2) Distinguishing implicit anomalies from regu-
lar variation. Anomalies may lead to feature patterns similar to
those of regular variations, while their contextual modes are differ-
ent. For example, for detector #825675 in Fig. 1, a drop in speed at
around 9 pm is most likely a regular variation of speed, while a low
speed at around 11 pm may indicate an accident. This challenge
makes it especially important to capture patterns while taking spa-
tiotemporal dependencies and traffic connectivity into account. (3)
Maintaining robustness with a lack of normal references. A traffic
accident may affect the speeds measured by several adjacent
detectors for an extended period. As shown in Fig. 1 accident
#3547 lasts for two hours and covers all the neighbors of detector
#825675. The predicted value of detector #825675 could be very
close to the abnormal value if only the previous one hour’s data
are used for prediction. Existing studies are based on either tempo-
ral only modeling methods, or spatiotemporal modeling
approaches based on an Euclidean assumption, which ignores the
nature that the traffic of a specific road section is often affected
more by the connectivity than the Euclidean distances to the other
road sections (4) Complex internal structures. Traffic anomaly data is
typically characterized by several complex internal structures such
as trend, seasonality, stationarity, and auto-correlation. The
internal structures of the data require special formulation and
techniques for their analysis. It is essential to develop effective
models to explore the interdependent relationships among
seasonal, cyclical, and irregular components in the traffic data.
These models are then used to predict the series for future points
in time.

To overcome the challenges above, we propose the seasonal
deep Kalman filter network (S-DKFN), a novel spatiotemporal
anomaly detection method based on graph neural network. The
model leverages multi-scale heterogeneous features to distinguish
anomalies from their contexts. The denoised combination of spatial
and temporal information ensures the recovery of normal patterns
with little normal information. The significant contributions of this
paper are summarized below.
d #3780 (blue markers with red circles) affects the speed measurements of several

Y. Sun, Y.-C. Lu, K. Fu et al. Journal of King Saud University – Computer and Information Sciences 34 (2022) 4729–4742
� Proposing S-DKFN, a novel unsupervised traffic anomaly
detection model based on temporal and spatial features
fusion to hunt more comprehensive anomaly patterns. The
model incorporates features of different spatial and temporal
resolutions while maintaining the atomicity of training sam-
ples. It leverages different neural network and denoising tech-
niques to produce smooth predicted time series.
� Proposing a mechanism to incorporate seasonal features
through a multi-level sliding window. Sliding windows turn
historical timestamps in larger windows into seasonal features
and thus shorten the lengths of training sequences. This method
improves the effectiveness of long short-term memory net-
works (LSTMs) and overcomes the inability of LSTMs to handle
nonadjacent timestamps.
� Designing a dilation temporal convolution networks (TCN)
module and an encoder-decoder module. The TCN module
assembles different levels of seasonal features, which ensures
that no noise by irrelevant timestamps is introduced. The
encoder-decoder module is adopted to expand single-season
features to multi-seasonal features, forcing the model to drop
some small-scale features to enhance the robustness of S-DKFN.
� Leveraging the principle concept of the Kalman filter for
model merging. The Kalman filter merges the spatial and tem-
poral features by rectifying the high-noise features with low-
noise features. The optimized features and a residual of the
unmerged features are used for prediction in the next step.
� We conduct ample experiments on two real-world datasets
to evaluate the effectiveness and efficiency of S-DKFN. Our
proposed model is evaluated on the METR-LA and PEMS08 data-
sets with anomalies of different durations and coverages. The
proposed method outperforms competing methods over multi-
ple metrics. The experimental results verify that S-DKFN out-
performs the state-of-the-art methods in detecting long
duration and large-coverage anomalies.

The rest of this paper is organized as follows. Section 2 reviews
the subject background and related work. Section 3 defines the
problem. Section 4 introduces the details of S-DKFN. Section 5 pre-
sents experiments on two real traffic datasets and the paper is con-
cluded in Section 6.
2. Related works

In this section, we survey the literature of the related research
topics, namely temporal and spatiotemporal modeling, general
anomaly detection approaches, and traffic anomaly detection.
2.1. Temporal and spatiotemporal modeling

Time series modeling. Temporal modeling has been exten-
sively researched for decades. Traditional approaches including
historical average (HA) (Liu and Guan, 2004), auto-regressive inte-
grated moving average (ARIMA) (Hamed et al., 1995), support vec-
tor regression (SVR) (Smola and Schölkopf, 2004), and hidden
Markov models (HMMs) (Rabiner, 1990) have been widely applied
in various domains. In recent years, neural networks models such
as recurrent neural networks (Rumelhart et al., 1985) and their
variants, including LSTM (Hochreiter and Schmidhuber, 1997;
Zhu and Laptev, 2017), gated recurrent unit (GRU) (Cho et al.,
2014), and WaveNet (van den Oord et al., 2016) have also been
popular for modeling time series data.

Spatiotemporal modeling. Traditional modeling approaches
often base on Euclidean assumptions to capture the spatial depen-
dencies. Bruna et al. first proposed a combination of a spatial
method and a spectrum method that generalized convolutional
4731
neural networks (CNN) from a Euclidean domain to a non-
Euclidean domain (Bruna et al., 2014). Following studies extended
this idea and formally introduced GCNs (Kipf and Welling, 2017),
which generalize the convolution operator from grid-based data
to graph data. Recent literature has proven that GCNs achieve
superior performance in various domains (Duvenaud et al., 2015;
Battaglia et al., 2016). With the success of GCN, Yu et al. (2018)
proposed a hybrid approach to model the spatiotemporal effects
with a gated CNN that captures temporal patterns, and a GCN cap-
tures the spatial patterns. Guo et al. (2019) enhanced the model of
Yu et al. with attention networks. Wu et al. (2019) proposed a com-
bination of WaveNet and GCN for general-purpose spatiotemporal
prediction. STAWnet (Tian and Chan, 2021) is one of the newest
spatiotemporal forecasting models which utilizes hierarchical tem-
poral features and attention to improve performance.

2.2. Anomaly detection

General anomaly detection. Existing anomaly detection
approaches can be sorted into two major categories (Pang et al.,
2021), namely anomaly measure-dependent learning and generic
feature learning. The anomaly measure-dependent methods focus
on measuring a particular anomaly measure. For example, the
distance-based methods (Knorr and Ng, 1999; Ramaswamy et al.,
2000), one-class classification methods (Moya et al., 1993; Roth,
2005), and clustering-based methods (He et al., 2003) fall in this
category. These types of methods are well studied and normally
easily to be implemented, but struggles with more complicated
distributions within the normal class. The generic feature learning
group of methods is based on the models that are not specifically
designed for anomaly detection. More recent studies adopt deep
learning techniques to identify anomalous objects (Ma et al.,
2021). For instance, models based on auto-encoders (Doersch,
2021; Lu et al., 2017) can identify anomalies by poorly recon-
structed instances. Approaches based on generative adversarial
networks (GAN) (Schlegl et al., 2017; Hundman et al., 2018;
Medico, 2020) aim to learn a hidden feature space that can capture
the normality, and thus detect the anomalies by the differences
between the actual instances and the generated instances.
Graph-based deep learning methods are also powerful tools for
exploring anomaly communities, as they can create much more
powerful representations of node attributes and community struc-
tures (Liu et al., 2020; Su et al., 2021). These types of approaches
are often used for image or video anomaly detection (Liu et al.,
2018; Ye et al., 2019).

Traffic anomaly detection. Traffic anomaly detection has been
studied in the field of data mining, urban computing, and trans-
portation. Various approaches to detecting abnormal traffic status
have been explored. Liu et al. (2011) proposed an early study to
detect spatiotemporal anomaly series based on transforming the
GPS trajectory data into a region graph, and identified the anoma-
lies from the attribute distances between each pair of graph links
in the same time frame. Tisljaric et al. (2020) presented an
approach to detect traffic anomalies in GPS data using tensor
decomposition techniques. This approach transforms traffic pat-
terns to a speed transition matrix, and identifies the anomalies
based on the significance of the Kullback–Leibler (KL) divergence.
Yu et al. (2021) presented a deep spatiotemporal graph convolu-
tional network to predict traffic accidents. Deb and Liew (2019)
proposed an algorithm called NoiseCleaner to identify and correct
noisy categorical attributes values in large traffic accident datasets
to avoid misleading the model by noise. Overall, most of the exist-
ing traffic anomaly detection approaches leverage neither graph
neural networks nor fixed sensor data. In this paper, we propose
a novel method based on a robust spatiotemporal predictive model
capable of detecting traffic anomalies in fixed sensor datasets.

Y. Sun, Y.-C. Lu, K. Fu et al. Journal of King Saud University – Computer and Information Sciences 34 (2022) 4729–4742
3. Problem statement

This section first provides the definitions and notations of traffic
networks and seasonal features in our research. Then, Section 3.3
briefly explains how a prediction model works as an unsupervised
anomaly detection model.

3.1. Traffic network

In this research, the traffic network is considered as an undi-
rected graph G ¼ V ; E;Að Þ, where V is a set of nodes (jV j ¼ N)
defined by the fixed position traffic detectors. E is the edges con-
necting the related nodes, and A 2 RN�N is the adjacency matrix
representation of E. The edges between nodes are generated from
geodesic or road distances among detectors, based on the assump-
tion that closer nodes are more similar to each other. Each node
sensor reports traffic measurements (e.g., average speed, traffic
volume, and lane occupancy) at the same frequency. Fig. 2 shows
an example of a traffic detector network. The red dots indicate
the locations of detectors, which are sensors set at fixed locations
along the roads. The lines connecting detectors are the edges
between the nodes. The different colors of the edges indicate the
various geodesic distances between detector nodes.

3.2. Seasonal features

Given a time series t ¼ 0;1; . . . ; T � 1; T . At each timestamp,
each of the N detectors in G produces F traffic condition features.
The raw data matrix is denoted as X ¼ X1;X2; . . . ;XTð ÞT 2 RT�N�F .
Consider that the current time is t0 and s � p timestamps are used
for seasonal feature extraction. The seasonal feature is

St0 ¼ Agg Xt0�s� pþ1; . . . ;Xt0� s�1ð Þ� pþ1; . . . ;Xt0�pþ1; . . . ;Xt0

� �T 2 RN�F ,
where Agg is the employed aggregation function. That is, seasonal
features are aggregations of Tp consecutive timestamps every p
timestamps.

With different s and p, the model can incorporate seasonal fea-
tures with different temporal resolutions. The number of times-
tamps used to generate seasonal features for one timestamp is
max si � pif g; i ¼ 0;1; . . . ; L, where L is the number of different
s; pð Þ pairs.

3.3. Unsupervised prediction-based anomaly detection

There are two major tasks in prediction-based anomaly detec-
tion models: prediction and anomaly detection. For prediction,
Fig. 2. Traffic detector nodes with edges. The red dots are detectors distributed along roa

4732
the anomaly detection model learns the high-level pattern and
generates a series of predicted network features at each times-
tamp. Then, during anomaly detection, data samples ‘‘of a certain
distance” from the corresponding predicted values are removed.
3.3.1. Traffic prediction
Note that Xt 2 RN�F represents the network features at times-

tamp t; xvt 2 RF is the features of network node v at t, and xv ;ft 2 R

is the value of feature f of v at t. We have Xt ¼ x1t ; x
2
t ; . . . ; x

N
t

� �T
and xvt ¼ xv ;0t ; xv ;1t ; . . . ; xv ;Ft

� �T
. With historical features of time

sequence t � Tp þ 1; t � Tp þ 2; . . . ; t and corresponding seasonal
features St�Tpþ1; St�Tpþ2; . . . ; St

� �
in a time window of length s, the

objective is to estimate features xvtþ1; x
v
tþ2; . . . ; x

v
tþTpred

n o
of each

node v at timestamps t þ 1; t þ 2; . . . t þ Tpred, where Tpred is the
number of timestamps to be predicted.
3.3.2. Anomaly detection
The distances from the original data samples to the predicted

values are estimated through the mean square error (MSE) or the
sum of squared errors (SSE). Data samples are considered as
‘‘anomalies” if their MSE or SSE values are more significant than
a threshold.
4. Methodology

This research turns a sequence of records in a traffic network
into anomaly scores in three steps: extracting seasonal features
from the original data (Section 4.2), producing predicted results
(Section 4.3), and turning the predicted features into anomaly
scores (Section 5.4).
4.1. Preliminary

This section provides the theoretical analysis and formula
deduction of time series decomposition and the Kalman filter. Time
series decomposition is used for seasonal feature extraction, and
the Kalman filter is used for merging the outputs of the spatial
analysis module and the temporal analysis module. The two meth-
ods are used in Facebook-Prophet (F.C.D.S. team, 2017) and DKFN
(Chen et al., 2020) separately. Note that this section uses a symbol
system independent from the other parts of this paper.
ds. The edges are constructed among nodes of geodesic distances within a threshold.

Y. Sun, Y.-C. Lu, K. Fu et al. Journal of King Saud University – Computer and Information Sciences 34 (2022) 4729–4742
4.1.1. Time series decomposition
Time series decomposition (Enders, 2004) is a technique widely

used in ‘‘non-neural network” time series analysis models, such as
ARIMA (Ahmed and Cook, 1979) and Facebook-Prophet (F.C.D.S.
team, 2017). An arbitrary time series Yt is always composed of a
trend series Tt , a seasonal series St , and a residual series Rt . The
composition method can be either addictive (Yt ¼ Tt þ St þ Rt) or
multiplicative (Yt ¼ Tt � St � Rt). The additive method will be
used as an example below. With a determined period p; Tt at time
slot t is computed through a centered moving average

Tt tð Þ ¼ 1
p

P �p
2;
p
2½ �

i Yt ið Þ. The variation caused by St and Rt can then be

separated from the original time series by Yt � Tt . St is the mean
of Yt � Tt ;Yt�p � Tt�p; . . . ;Yt�k� Np � Tt�k� Np

� �
, where Np is the

number of period.
Regression-based time series analysis models leverage the

whole training dataset for seasonal feature estimation. To maintain
the molecular feature of training data samples, in this research, a
sliding window of length Nwp � p is used to compute the seasonal
features of the last p time slots, where Nwp is the number of peri-
ods contained in the sliding window.

4.1.2. Kalman filter
The Kalman filter has been frequently used in regression and

deep learning models (Coskun et al., 2017; Lu et al., 2018) due to
its ability to merge two estimations by minimizing their covari-
ance. The Kalman filter is commonly used for merging the estima-
tion of xtþ1 from historical data xt and the measurement ztþ1 by
minimizing the variance of xtþ1. Let xtþ1 ¼ Axt þw and
ztþ1 ¼ Hxtþ1 þ v , where A and H are coefficient matrices.
w � N 0;Qð Þ is the prediction noise, and v � N 0;Rð Þ is the measur-
ing noise. The xtþ1 predicted from xt and xtþ1’s variance are:

x̂0tþ1 ¼ Axt þw ð1Þ

bP 0tþ1 ¼ AxtA
T þ Q ð2Þ

The estimation adjusted by the measurement ztþ1 can then be
written as:

x̂tþ1 ¼ x̂0tþ1 þ Ktþ1 ztþ1 � Hx̂0tþ1
� � ð3Þ

bPtþ1 ¼ I � Ktþ1Htþ1ð ÞbP 0tþ1 ð4Þ

where Ktþ1 ¼ bP 0tþ1HT HbP 0tþ1HT þ R
� ��1

is the Kalman gain. Inspired

by Chen et al. (2020), we leverage the principal concept of the Kal-
man filter for distribution merging. The concepts are described as
follows.

For a value x, consider that there are two independent estima-
tions x1 and x2, and x is a weighted combination of x1 and x2:

x̂ ¼ w1x1 þw2x2 ð5Þ
Where w1 and w2 are weights of x1 and x2;w1 þw2 ¼ 1. The

expectation of x̂; E x̂ð Þ ¼ w1E x1ð Þ þw2E x2ð Þ. As E x1ð Þ and E x2ð Þ are
independent, E x1 � E x1ð Þ½ � x2 � E x2ð Þ½ �ð Þ ¼ 0 . r2 can then be written
as:

r2 ¼ E x̂� E x̂ð Þ½ �2
� �

¼ w2
1E x1 � E x1ð Þ½ �2
� �

þw2
2E x2 � E x2ð Þ½ �2
� �

¼ w1r2
1 þw2r2

2

ð6Þ

Let w2 ¼ w and w1 ¼ 1�w. To minimize r2, let the differential
between r2 and w be zero:

dr2

dw
¼ �2 1�wð Þr2

1 þ 2wr2
2 ¼ 0 ð7Þ
4733
The analytical solution of w is:

w ¼ r2
1

r2
1 þ r2

2

ð8Þ

x̂ and r2 are:

x̂ ¼ r2
2x1 þ r2

1x2
r2

1 þ r2
2

;r2 ¼ r2
1r2

2

r2
1 þ r2

2

ð9Þ

In a prediction model, consider that x1 and x2 are two estima-
tions generated by two different models. From Eq. 9, it can be
inferred that the merged estimation x̂ is the weighted sum of x1

and x2, where the weights are r2
2

r2
1þr2

2
and r2

1
r2
1þr2

2
respectively.

4.2. Seasonal feature extraction

In traffic networks, attributes, such as speed and occupancy,
would not increase or decrease over time. Therefore, the seasonal
features St are merged with the original time series as the inputs
of the time series analysis model.

In recurrent neural networks (RNNs), the input of extended
time sequences can lead to extremely long training times and gra-
dient explosion or vanishing. Therefore, a multi-level sliding win-
dow method is employed along with time decomposition to
extract seasonal features of each time slot. Consider the current
time is t0 and Tp timestamps t0 � Tp þ 1; t0 � Tp þ 2; . . . ; t0 are used
for prediction. The base sliding window is of size Tp and the data
contained in the sliding window is X0 ¼ Xt0�Tpþ1;

�
Xt0�Tpþ2; . . . ;Xt0 ÞT 2 RTp�N�F .

The first sliding window used for seasonal feature extraction
contains s1 � p1 þ Tp timestamps including t0, that is

X1 ¼ Xt0�s1 �p1�Tpþ1;Xt0�s1 �p1�Tpþ2; . . . ;Xt0

� �T 2 Rs1 � p1þTp�N�F . Time
series decomposition is performed on X1 to compute the seasonal
features of each element in X1. Based on the definition of time ser-
ies decomposition in Section 4.1.1, the first-level seasonal feature
S1t0 of t0 can be computed as:

S1t0 ¼
1

s1 þ 1

X
Xt � Ttð Þ ð10Þ

where t ¼ t0 � s1 � p1; t0 � s1 � 1ð Þ � p1; . . . ; t0f g is the Tpth ele-
ment in every p1 timestamps. Tt is the trend at timestamp t. In this
case, the generated seasonal feature matrix is also of size Tp � N � F

and the number of features is doubled (X 2 R T�N� 2 � Fð Þð).
Other s and p can be added the same way as s1 and p1. If L win-

dows are used, the number of timestamps used to generate one
inTp and the size of an input sample is Tp � N � L � Fð Þ.

4.3. S-DKFN model

As shown in Fig. 3, the S-DKFN model has two components: a
spatial analysis module for spatial relation modeling and a tempo-
ral analysis module for temporal relation modeling. In the rest of
the article, we use GCLSTM to represent the spatial analysis mod-
ule, as the module consists of GCNs and an LSTM module. TCLSTM
is employed to represent the temporal analysis module due to its
time convolution network (TCN) and LSTM structure. GCLSTM is
used to simulate interactions between each node and its neighbors.
Similarly, the ‘‘temporal relation” describes historical features’
effects on the current timestamp for each node.

At each timestamp, the input of GCLSTM is the adjacency
matrix and the original time sequence data, and the input of
TCLSTM is the original data and the seasonal features extracted
during preprocessing. GCLSTM leverages a GCN block to extract
the spatial-dependency features of the input data and feed the

Fig. 3. Network architecture of S-DKFN. For each timestamp, the input of GCN is the k-hop adjacent matrix and X; The input of TCN is Xwith seasonal features S. The output of
the final timestamp is send expanded to bX � bS for loss computation.

Y. Sun, Y.-C. Lu, K. Fu et al. Journal of King Saud University – Computer and Information Sciences 34 (2022) 4729–4742
features to an LSTM layer. In TCLSTM, the original data and the
seasonal features are merged with a dilation TCN block and sent
to an LSTM layer as well. The outputs of the LSTM layers are
merged with the Kalman filter and fed to the next timestamp.
At the final timestamp, the outputs of LSTMs are merged with
the Kalman filter and then sent to a simple encoder-decoder
module to generate a prediction of both the original data and
the corresponding seasonal features. The architecture of the
model can be found in Fig. 3.

The model considers each feature of the original data sepa-
rately. To simplify the symbol system, the number of features for
each node at each timestamp will be considered as 1 in this
section.

4.3.1. GCLSTM
GCN performs convolution on graphs to aggregate information

among adjacent nodes. Instead of adjacent pixels, a graph convolu-
tional layer considers linked nodes as ‘‘adjacent” and merges the
information of each node and their k-hop neighbors with convolu-
tion kernels. The classic method is to perform graph convolution in
the frequency domain with the Laplacian matrix and learn the k as
in ‘‘k-hop neighbors” to be aggregated for each node with some
approximation method such as Chebyshev polynomial (Kipf and
Welling, 2017).

In this model, a straight-forward (i.e., no approximation) ver-
sion of GCN is employed. The method can be considered as a linear
combination of the weights of the 1;2; . . . ; k-nearest neighbors of
each node. In this way, the effects of the neighbors can be dynam-
ically adjusted through the coefficients. The weights of the kth
nearest neighbors can be computed through k times self-
multiplications of the adjacency matrix. The 1 to kth adjacent

matrices A;A2 � . . .� Ak are stacked together to form a N � k � Nð Þ
matrix. Then, a row-wise normalization is performed on the
stacked matrix, as the spatial relations of each node are considered
independently. The graph convolution feature GCt 2 RN�N is com-
puted as:

GCt ¼ Wgc 	 norm A� A2 � . . .� Ak
h i� �

Xt

�
ð11Þ
4734
where Wgc 2 RN� k�Nð Þ is a trainable weight matrix of the elements in
the adjacency matrices. � denotes a vertical concatenation of matri-
ces. Xt 2 RN is the input data at timestamp t, and norm is the row-

wise normalization method performed on A� A2 � . . .� Ak.
The output graph convolution features of each timestamp are

then fed to an LSTM layer. For the recurrent unit of timestamp t,
the input gate it , the output gate ot , the forget fate f t , and the mem-

ory cell state eCt are computed as:

it ¼ r Wi Ht�1 � GCt½ � þ bið Þ ð12Þ

ot ¼ r Wo Ht�1 � GCt½ � þ boð Þ ð13Þ

f t ¼ r Wf Ht�1 � GCt½ � þ bf
� � ð14Þ

eCt ¼ tanh Wc Ht�1 � GCt½ � þ bcð Þ ð15Þ
where r is the sigmoid activation function and tanh is the tangent
activation function. Wi;Wo;Wf , and Wc are weights of the matrices
and bi; bo; bf , adn bc are bias. Ht�1 is the hidden state of the last
timestamp. Both of Ht�1 and GCt are of RN�N features.

As the weights of relations among nodes vary at each times-
tamp, the cell state of the last timestamp should be re-weighted
before being merged with the current cell state. A cell state gate
is added to the original LSTM model as:

C�t ¼ WN 	 norm A� A2 � . . .� Ak
h i� �

Ct�1
�

ð16Þ

where WN is the matrix to re-weight the effects of each node’s
neighbors. The final cell state and hidden state of timestamp t is
computed as:

Ct ¼ f t 	 C�t�1 þ it 	 eCt ð17Þ

Ht ¼ ot 	 tanh Ctð Þ ð18Þ
4.3.2. TCLSTM
During preprocessing, using L sliding windows leads to an input

size of L times the original input, and thus L times the number of

Y. Sun, Y.-C. Lu, K. Fu et al. Journal of King Saud University – Computer and Information Sciences 34 (2022) 4729–4742
parameters in a linear model. In this case, a dilation convolution
module is applied to mix the original data with the seasonal fea-
tures and reshape the input size back to N.

The dilation convolution module contains four time-
convolution layers. A convolution layer of dilation of N and a kernel
size of L is first applied to merge the original data with seasonal
features. Then, the other three layers merge the information of
adjacent timestamps. The size of the final output matrix is s� N,
where s is the number of timestamps in the first-level sliding
window.

The output of the time convolution module is then sent to an
LSTM layer. The implementation of the LSTM is the same as the
LSTM in Section 4.3.1.

4.3.3. Kalman filter
In this model, the data are not treated as ground truth but as

measurements with noise. Therefore, the temporal relations and
spatial relations between data values might slightly diverge from
the truth. The Kalman filter is employed to denoise predicted val-
ues by minimizing the differences between the statistical distribu-
tions of the temporal relation model’s predictions and the spatial
relation model’s predictions.

The spatial analysis module and the time series analysis module
are merged with the Kalman filter. To avoid the time-consuming
matrix multiplications in the traditional Kalman filter, a simplified
version of the Kalman filter is employed. The basic idea is to scale
the output of TCLSTM and GCLSTM at each timestamp with the
variance of the outputs. Based on Eq. 9, the formula is:

Hkf ;t ¼ c � Vartc;t � Hgc;t þ 1� cð Þ � Vargc;t � Htc;t

Vartc;t þ Vargc;t þ c
ð19Þ

Wherew is a trained parameter in the model. Hkf ;t is the merged
hidden state. Vargc;t and Vartc;t are the variances of the hidden
states of the TCLSTM module and the GCLSTM module, respec-
tively. Hgc;t and Htc;t are hidden states of the GCLSTM module and
the TCLSTM module. The hidden states of GCLSTM and TCLSTM
are then updated as:

H0gc;t ¼ Hgc;t � Hkf ;t

� �� Hkf ;t ð20Þ

H0tc;t ¼ Htc;t � Hkf ;t

� �� Hkf ;t ð21Þ

Finally, The output of the spatiotemporal module is merged
with the daily historical data encoder module by a fully connected
layer.

4.3.4. Encoder-decoder
The encoder-decoder module is simply a stack of linear layers.

The idea is to first extract high-level features of the predicted fea-
tures by reducing the number of dimensions and then expanding
the number of dimensions to the number of features plus the num-
ber of seasonal features.

4.3.5. Loss
MSE loss is employed to evaluate the model’s ability to predict

both the original features and the corresponding seasonal features.
The feature to be predicted is Xtþ1 and the seasonal feature is Stþ1,
the loss function can be written as:

MSELoss ¼ 1
l � N

�
XN
i¼1

yOi � ŷOi
� �2 þXN

i¼1
yS1i � ŷS1i

� �2
þ . . .þ

XN
i¼1

ySLi � ŷSLi
� �2

" #
ð22Þ
4735
Where L is the number of seasonal features; yO is the ground
truth of the original data; ŷO is the predicted values of the original
data; ySl is the ground truth seasonal features extracted by sliding
window l; ŷSl is the predicted seasonal features of sliding window l.
It is noted that both the yO and the ySl represent the traffic data
itself, but not the label of the data. So, our S-DKFN is an unsuper-
vised model.

4.4. S-DKFN Algorithm

The algorithm of the prediction model is described in Algo-
rithm1. The S-DKFN model needs three inputs: the adjacency
matrix and the original time sequence data for GCLSTM mudule,
the original data and the seasonal features extracted during pre-
processing for TCLSTM part, and hyperparameters of the time win-
dow of length s and the number of hops of neighbors K.

As described on line 7, GCN leverages a GCN block to extract the
spatial-dependency features of the input data. TCN fuses the orig-
inal data and the seasonal features with a dilation TCN block. The
outputs of these two modules are fed to LSTMs layer to be pro-
cessed separately (line 10–16). The outputs of the LSTM layers
are merged with the Kalman filter (line 19–21) and fed to the next
timestamp. At the final timestamp, the outputs of LSTMs are
merged with the Kalman filter and then sent to a simple
encoder-decoder module to generate a prediction of both the orig-
inal data and the corresponding seasonal features (line 23–26).

Algorithm1 Workflow of the S-DKFN model.

Input: A graph G ¼ V ; E;Að Þ with features of the last Tp

timestamps Xt�Tpþ1;Xt�Tpþ2; . . . ;Xt

n o
and corresponding

seasonal features St�Tpþ1; St�Tpþ2; . . . ; St
n o

in a time window

of length s. Number of hops of neighbors K.
Output: A graph G ¼ V ; E;Að Þ with features

Xtþ1;Xtþ2; . . . ;XtþTpred

n o
at timestamps

t þ 1; t þ 2; . . . t þ Tpred.

1: eA ¼ norm A� A2 � . . .� Ak
h i� �

2: Hgc;�1 0½ �N�F , Htc;�1 0½ �N�F
3: Cgc;�1 0½ �N�F , Ctc;�1 0½ �N�F
4:
5: for j in t � Tp þ 1; t � Tp þ 2; . . . ; t

� �
do

6: // Use GCN and TCN to map the inputs to the same space as
the hidden states of the last timestamp

7: GCj Wgc 	 eAXj , TCj TCN Xj � Sj
� �

8:
9: // Process spatial and seasonal features with different LSTM

modules
10: igc;j r Wgc;i Hgc;j�1 � GCj

� 	þ bgc;i
� �

,
itc;j r Wtc;i Htc;j�1 � TCj

� 	þ btc;i
� �

11: ogc;j r Wgc;o Hgc;j�1 � GCj
� 	þ bgc;o

� �
,

otc;j r Wtc;o Htc;j�1 � TCj
� 	þ btc;o

� �
12: f gc;j r Wgc;f Hgc;j�1 � GCj

� 	þ bgc;f
� �

,

f tc;j r Wtc;f Htc;j�1 � GCj
� 	þ btc;f

� �
13: eCgc;j tanh Wgc;c Hgc;j�1 � GCj

� 	þ bgc;c
� �

,eCtc;j tanh Wtc;c Htc;j�1 � GCj
� 	þ btc;c

� �
14: C�gc;j Wgc;N 	 eACgc;j�1, C

�
tc;j Wtc;N 	 eACtc;j�1

15: Cgc;j f gc;j 	 C�gc;j�1 þ igc;j 	 eCgc;j,

Ctc;j f tc;j 	 C�tc;j�1 þ itc;j 	 eCtc;j

(continued on next page)

Y. Sun, Y.-C. Lu, K. Fu et al. Journal of King Saud University – Computer and Information Sciences 34 (2022) 4729–4742
16: Hgc;j ogc;j 	 tanh Cgc;j
� �

, Htc;j otc;j 	 tanh Ctc;j
� �

17:
18: // Merge the spatial hidden states and the seasonal hidden

states with Kalman filter

19: Hkf ;j ¼ c� Vartc;j � Hgc;jþ 1�cð Þ� Vargc;j � Htc;j

Vartc;jþVargc;jþc
20: H0gc;j ¼ Hgc;j � Hkf ;j

� �� Hkf ;j

21: H0tc;j ¼ Htc;j � Hkf ;j
� �� Hkf ;j

22: Ht:tþTpred
 W0Hkf ;t þ b0 // Expend 1 timestamp to Tpred

timestamps
23: Ht:tþTpred

 Ht:tþTpred
� St:tþTpred

// Combine prediction results
with Stþ1; . . . ; StþTpred

24: Ht:tþTpred
 W3 W2 W1Hkf ;t þ b1

� �þ b2
� �þ b3 // Encoder-

decoder for noise filtering
25: return Ht:tþTpred
4.5. Anomaly score and complexity analysis

By applying S-DKFN to a series of traffic network data, the pre-
diction results from timestamp Tfirst to Tlast are generated. Tfirst is
the first timestamp that can be predicted with enough historical
data, and Tlast is the last timestamp to be predicted. For each times-
tamp t 2 Tfirst ; Tlast

� 	
and each node v, the anomaly score is com-

puted based on the MSE formula:

Score ¼ mean yt;v � ŷt;v
� �2� �

ð23Þ

Note that the meanðÞ function is applied over all the features if
more than 1.

Based on the survey of Wu et al. (2020), the time complexity of

a GCN layer is O mdþ nd2
� �

where m is the number of edges; n is

the number of nodes; d is the number of features. Denote the
sequence length as l and the number of seasons as s. It can be easily
computed that the time complexity of TCN is O lnð Þ and those of
Linear layers are O n2

� �
. In this case, the overall time complexity

is O sl mdþ nd2 þ ln
� �

þ n2
� �

. As s and l are usually small, the time

complexity can be simplified as O mdþ nd2 þ nþ n2
� �

. Similarly,

the space complexity is O ndþ d2 þ n2
� �

.

5. Experiment

In this section, we explore how the duration and coverage of
anomalies affect the efficiency of anomaly detection. The duration
here indicates how many consecutive timestamps the anomaly
spans, and coverage refers to how many adjacent nodes the anom-
aly covers. The experiments were designed based on the assump-
tion that extensive duration and coverage of anomalies reduces
the normal information the model acquires during prediction.
Due to the lack of normal information, the predicted values may
be closer to the abnormal and local features than to the normal
and global patterns. The performance of our proposed model was
compared with different types of state-of-the-art models. Besides,
ablation experiments were also conducted to prove the effective-
ness of each module of S-DKFN.
4736
5.1. Dataset

We conducted vast experiments on two real-world datasets,
including METR-LA and PEMS08 to evaluate the performance of
S-DKFN. Particularly, METR-LA was used to examine the model
performance against different duration. PEMS08 was used to sim-
ulate the duration and coverage of real accidents. We followed a
similar process as in existing anomaly detection studies to inject
artificial anomalies (Riani et al., 2009). Note that there are implicit
anomalies in the datasets. The anomaly example of this sort is
described in Introduction section.
5.1.1. METR-LA
METR-LA is a traffic network dataset containing 207 detectors.

We extracted the speed measurements from May 1, 2012, to June
1, 2012, aggregated to 5-min average speeds. The missing rate was
2:6%. The missing data were filled using linear interpolation.

Adjacency Matrix. The adjacency matrix was generated based
on the assumption that the closer a pair of nodes, the more likely
they are to be connected. The geodesic distances on Earth between
nodes were computed and normalized. Distances smaller than a
threshold were chosen to be edges of the network. The value of
the threshold was chosen through an experiment designed in Li
et al. (2017).

Anomaly Generation. METR-LA were used to evaluate how dif-
ferent models deal with different durations of anomalies. For every
400 timestamps, an anomaly 5–10 mph smaller/larger than the
minimum/maximum measurements per detector was added to
the original dataset. The duration of the anomalies varies from
10 (50 min) to 50 (250 min) with a step size of 10.
5.1.2. PEMS08
The PEMS08 dataset was formed by the 5-min average speeds

from September 1, 2019 to October 1, 2019. The data were col-
lected by 1150 detectors along several arterial roads in Los Angeles.
The missing rate was 0:14%, and the missing data were filled using
linear interpolation.

Adjacency Matrix. The adjacency matrix was generated
through the same strategy as for METR-LA. The average degree
was 7:4. The mean and median of the length of edges were 262:5
m and 177:2 m, respectively. The minimum length were 0:0 m
(self-loop), and the maximum length was 799:2 m.

Anomaly Generation. The PEMS08 dataset was used to simu-
late the spatial and temporal distribution of real traffic accidents.
The measurements of detectors were within a
300 m/1000 m/3000 m and the duration of an accident was
assigned to values 5–10 mph less than the minimum of the corre-
sponding detectors’ measurements.
5.2. Metrics

Anomaly detection problems are solved by distinguishing
anomalies from normality. Therefore, anomaly detection problems
are usually identified as binary classification problems. Precision,
recall, F1-score, and AUC-ROC are efficient metrics to examine if
a model can separate relevant instances from irrelevant instances
and are thus be employed for result evaluation in this research.

Among the four metrics, precision is the fraction of normal
samples among the instances identified as ‘‘normal.” Recall is the

Y. Sun, Y.-C. Lu, K. Fu et al. Journal of King Saud University – Computer and Information Sciences 34 (2022) 4729–4742
fraction of retrieved normal samples among all normal samples.
F1-score can be acquired from precision and recall.

AUC-ROC is the area under the receiver operating characteristic
(ROC) curve. ROC first ranks data samples by their scores (the
higher the score, the more likely the sample is an anomaly) and
then plots the accumulated true positive rate (TPR) against the
false positive rate (FPR) with a variety of thresholds.

In the following section, ‘‘PRC” represents precision. ‘‘RCL”
means recall. ‘‘F1” represents F1-score, and ‘‘AUC” means
AUC-ROC.
5.3. Baselines

In order to verify the effectiveness of S-DKFN, we evaluate it
against six baseline methods: HA, SVR, Prophet, Telemamnom,
DKFN, ASTGCN, STAWnet. Particularly, HA, SVR, and Prophet are
models based on statistical or regression models. Telemamnom is
a time-series anomaly detection model, and DKFN, ASTGCN, and
STAWnet are spatiotemporal forecasting models.

HA (Liu and Guan, 2004). Historical average (HA) considers the
average value of the last several timestamps as the prediction
value.

SVR (Smola and Schölkopf, 2004). Support vector regression
(SVR) is a piecewise linear regression model that minimizes the
residuals of points very far from the line.

Facebook Prophet (F.C.D.S. team, 2017). Prophet is a piecewise
regression model leveraging historical, seasonal, and holiday
records for prediction. The model is claimed to be able to be used
for anomaly detection in Medico (2020).

Telemanom (Hundman et al., 2018). Telemanom is a
prediction-based anomaly detection model using LSTM. A batch
size of 64 and a learning rate of 0.0001 are employed.

DKFN (Chen et al., 2020). DKFN is a state-of-the-art deep spa-
tiotemporal forecasting model. The model also leverages GCN,
LSTM, and the Kalman filter. The author claims the model is noise
resistant. A batch size of 64 and a learning rate of 0.0001 are
employed.

ASTGCN (Guo et al., 2019). ASTGCN is a state-of-the-art deep
spatiotemporal forecasting model using an attention mechanism,
GCN, and TCN. The model also leverages seasonal features to pro-
duce robust prediction results. A batch size of 64 and a learning
rate of 0.001 are employed.

STAWnet (Tian and Chan, 2021). STAWnet (Spatial–Temporal
Attention Wavenet) is one of the newest spatiotemporal forecast-
ing models using an attention mechanism, GCN, and TCN. The
model utilizes hierarchical temporal features and attention to
improve performance. Our experiments employed the same
hyper-parameters as in the paper.
5.4. Parameter settings

In the experiment, we used one feature (traffic speed) and one
seasonal feature (daily) to train the model. The parameters for sea-
sonal feature extraction can be determined by investigating the
time decomposition results with different periods. The last 10
timestamps and their 7-day seasonal features were employed for
prediction. The k in ‘‘k-hop neighbors” for GCN was set to be 3.
In the TCN layers, all the kernel sizes along the time axis were 3.
During training, the batch size was 64. An Adam optimizer with
a learning rate of 1e�4 was employed.

For anomaly detection, a threshold over MSE is employed to
separate anomalies from normal data. MSE was chosen over mean
4737
average error (MAE) and root mean average error (RMSE) due to its
ability to exaggerate the differences between anomalies and nor-
mal data. Based on our experiment, a threshold of 800–1000 works
well for all the scenarios. We chose 800 in the experiments below.

5.5. Anomaly duration analysis

The PRC, RCL, and F1 of the different models are listed in Table 1.
The AUC-ROC scores of the different models are listed in Table 2. In
Table 1 and 2, dur ¼ d indicates the duration of each anomaly. The
actual duration is d � 5 minutes.

Table 1 shows that our model outperformed the baseline mod-
els on datasets with different anomaly durations. The perfor-
mances of TCLSTM and GCLSTM drop due to the lack of context
information. The performances of S-DKFN and all baseline models
increase as the length of the anomaly increases to 40. The cause of
this might be that more and more anomalies overlay with regular
traffic jams, and thus, identifying the normal pattern becomes
easier. However, the performances of S-DKFN and all baseline
models start to drop at duration ¼ 50, except for that of Prophet.
The reason for the performance drop is revealed in Fig. 4, which
indicates that the anomalies show a seasonal pattern. S-DKFN uti-
lizes the previous seven days’ seasonal features, so the perfor-
mances drop if most of the seven days are covered with
anomalies. However, Prophet leverage all the historical data to
compute its seasonal features and is, therefore, less sensitive to
periodical anomalies. Overall, Prophet and S-DKFN can usually out-
perform models without seasonal features in long-duration anom-
aly detection. ASTGCN, however, also uses seasonal features but is
not able to produce competitive results for this dataset. S-DKFN
always pose the highest AUC-ROC score for anomaly durations
from 10 to 50 according to Table 2, except that the AUC-ROC score
of S-DKFN (NE) is slightly higher than that of S-DKFN when
dur ¼ 20.

5.6. Anomaly coverage analysis

In this experiment, we explored whether the number of abnor-
mal neighbors affect the performance of the models. As the maxi-
mum edge length was approximately 800 m, 3000 mwas chosen to
make sure that none of the reachable neighbors were normal.

Considering that the anomaly detection methods for time series
(HA, SVR, Telemanom, and Prophet) cannot leverage the spatial
relations information, the time series anomaly detection methods
are only examined on the 300 m–anomaly dataset. The precision,
recall, F1-score, and AUC-ROC are shown in Table 3.

Table 4 presents the results of the datasets with various anom-
aly coverage. Based on the results, a radius of 1000 m can nega-
tively affect DKFN and S-DKFN, but each of the models performs
worse with an anomaly coverage of 3000 m. Besides, STAWnet is
not affected by radius of anomalies.

5.7. Case study

To examine how the prediction models handle the anomalies, a
case study was performed on a detector (ID: 801246) from the
7000th time slot (September 25, 2019, 08:20:00, local time) to
the 7600th time slot (September 27, 2019, 09:20:00, local time).
Fig. 5 shows how speed varies as incidents happen. Our target
detector is affected by five incidents during the 3000-min period,
with two incidents overlapping with each other. The prediction
results are plotted in Fig. 6. The plots are divided into four groups

Table 1
Precision, recall, and F1-score on METR-LA with different anomaly durations.

METR-LA (dur = 10) METR-LA (dur = 20) METR-LA (dur = 40) METR-LA (dur = 50)

PRC RCL F1 PRC RCL F1 PRC RCL F1 PRC RCL F1

HA 0.034 0.072 0.047 0.063 0.088 0.074 0.154 0.135 0.144 0.205 0.150 0.174
SVR 0.086 0.168 0.114 0.150 0.160 0.155 0.424 0.289 0.343 0.550 0.389 0.456
Prophet 0.450 0.496 0.472 0.682 0.587 0.631 0.809 0.864 0.836 0.756 0.902 0.823
Telemanom 0.253 0.416 0.315 0.440 0.504 0.470 0.506 0.338 0.406 0.579 0.316 0.409
ASTGCN 0.034 0.048 0.040 0.251 0.343 0.290 0.348 0.575 0.434 0.329 0.133 0.189
DKFN 0.418 0.598 0.492 0.485 0.495 0.490 0.364 0.433 0.396 0.386 0.418 0.402
STAWnet 0.281 0.063 0.103 0.323 0.063 0.106 0.385 0.041 0.074 0.413 0.034 0.062

TCLSTM1 0.519 0.589 0.552 0.327 0.419 0.367 0.443 0.605 0.511 0.494 0.435 0.462
GCLSTM2 0.525 0.584 0.553 0.324 0.418 0.365 0.438 0.635 0.518 0.492 0.433 0.460
S-DKFN (NE)3 0.326 0.438 0.374 0.755 0.663 0.706 0.443 0.263 0.330 0.384 0.346 0.364
S-DKFN 0.430 0.593 0.499 0.819 0.638 0.717 0.876 0.906 0.891 0.831 0.774 0.802

1. S-DKFN without GCLSTM and Kalman filter modules.
2. S-DKFN without TCLSTM and Kalman filter modules.
3. S-DKFN without the encoder-decoder module.

Table 2
AUC-ROC score on METR-LA with different anomaly duration.

dur = 10 dur = 20 dur = 30 dur = 40 dur = 50

HA 0.520 0.510 0.507 0.656 0.504
SVR 0.736 0.801 0.845 0.865 0.872
Prophet 0.923 0.967 0.983 0.982 0.969
Telemanom 0.741 0.778 0.746 0.669 0.598
ASTGCN 0.544 0.680 0.748 0.794 0.645
DKFN 0.926 0.886 0.754 0.701 0.656
STAWnet 0.709 0.632 0.586 0.570 0.541

TCLSTM1 0.960 0.938 0.905 0.925 0.908
GCLSTM2 0.963 0.943 0.905 0.926 0.908
S-DKFN (NE)3 0.926 0.985 0.668 0.613 0.697
S-DKFN 0.963 0.977 0.990 0.990 0.972

1. S-DKFN without GCLSTM and Kalman filter modules.
2. S-DKFN without TCLSTM and Kalman filter modules.
3. S-DKFN without the encoder-decoder module.

Fig. 4. MSE and prediction plot of Prophet and S-DKFN (dur = 50). Yellow dashed lines are timestamps with anomalies. Yellow dots are ground truth speeds. The x-axis is the
index of timestamps.

Y. Sun, Y.-C. Lu, K. Fu et al. Journal of King Saud University – Computer and Information Sciences 34 (2022) 4729–4742

4738

Table 3
Anomaly detection result on PEMS08 (300 m).

PRC RCL F1 AUC

HA 0.308 0.310 0.309 0.782
SVR 0.232 0.232 0.232 0.608
Prophet 0.720 0.747 0.733 0.987
Telemanom 0.222 0.241 0.231 0.801
ASTGCN 0.742 0.750 0.746 0.962
DKFN 0.554 0.567 0.561 0.962
STAWnet 0.472 0.030 0.057 0.693

TCLSTM1 0.620 0.804 0.700 0.992
GCLSTM2 0.646 0.796 0.713 0.992
S-DKFN (NE)3 0.315 0.825 0.456 0.986
S-DKFN 0.745 0.761 0.753 0.993

1. S-DKFN without GCLSTM and Kalman filter modules.
2. S-DKFN without TCLSTM and Kalman filter modules.
3. S-DKFN without the encoder-decoder module.

Y. Sun, Y.-C. Lu, K. Fu et al. Journal of King Saud University – Computer and Information Sciences 34 (2022) 4729–4742
to ensure that all the lines are clearly shown. Each plot contains
two parts. The first part displays the MSE against timestamps.
Areas with yellow shadows indicate the time slots with anomalies.
The second part shows the predicted speeds and the ground truth
Table 4
Anomaly detection result on PEMS08 (1000 m and 3000 m).

r = 1000

PRC RCL F1 R

ASTGCN 0.393 0.382 0.387 0
DKFN 0.395 0.729 0.513 0
STAWnet 0.491 0.050 0.091 0

GCLSTM2 0.270 0.432 0.332 0
S-DKFN (NE)3 0.280 0.322 0.300 0
S-DKFN 0.647 0.843 0.732 0

1. S-DKFN without TCLSTM and Kalman filter modules.
2. S-DKFN without the encoder-decoder module.

Fig. 5. Case study of detector #801246. The star marks the position of the #801246 and th
variation (blue line) and the timestamps with incidents (yellow dashed lines).

4739
speeds against timestamps. The indices of the timestamps are used
for the x-axis to better indicate the time interval among the ticks.

Based on Fig. 6, it can be concluded that methods without sea-
sonal features (HA, SVR, Telemanom, DKFN, STAWnet) are usually
not able to identify anomalies. Prophet performs well in anomaly
detection and shows a tendency toward underfitting regular traffic
jams (at around 08:20). S-DKFN (NE) appears to be a horizontal
line, which means that the model without the encoder-decoder is
not complex enough to simulate the time series. Both S-DKFN
and ASTGCN are able to fit regular traffic jams while not being
trapped by anomalies. However, none of the models can distin-
guish anomalies from seasonal traffic jams (at around 01:00). Both
Fig. 4 and Fig. 6c show the robustness of the model. Taking the
Fig. 6c as an example, our model can produce smooth predicted
time series without being affected by noise. Since S-DKFN lever-
ages different neural network architectures and denoising tech-
niques, and the TCN module assembles different levels of
seasonal features, which ensures that no noise by irrelevant times-
tamps is introduced. Furthermore, the encoder-decoder module
expands single-season features to multi-seasonal features, forcing
the model to drop some small-scale features to enhance the
robustness of S-DKFN.
r = 3000

OC PRC RCL F1 ROC

.737 0.409 0.273 0.327 0.849

.903 0.498 0.296 0.371 0.732

.624 0.501 0.044 0.081 0.620

.976 0.316 0.378 0.345 0.910

.965 0.324 0.449 0.376 0.910

.984 0.892 0.787 0.836 0.946

e blue markers are the locations of the accidents. The plot shows the detected speed

Fig. 6. Case study of detector #801246. The upper part is the MSE plot of [HA, SVR, S-DKFN], [Telemanom, Prophet, S-DKFN], [DKFN, ASTGCN, STAWnet, S-DKFN], and
[TCLSTM, GCLSTM, S-DKFN (NE), S-DKFN] against true anomalies (yellow dashed lines). The lower part is the plots of predicted speeds and ground truth (yellow dots).The x-
axis is the time.

Y. Sun, Y.-C. Lu, K. Fu et al. Journal of King Saud University – Computer and Information Sciences 34 (2022) 4729–4742
6. Conclusion

This paper presents S-DKFN, an unsupervised prediction-based
anomaly detection model. S-DKFN incorporates various neural net-
work architectures (GCN, TCN, LSTM, and encoder-decoder) and
leverages time series decomposition and a Kalman filter for denois-
ing. The model was examined on two traffic network datasets with
artificial anomalies of different durations and coverages. The
results show that S-DKFN can outperform all the baseline models
4740
in anomaly detection tasks. The case study indicates that S-DKFN
can distinguish anomalies from regular traffic congestions. In addi-
tion, S-DKFN is robust to anomalies with broad coverages and long
durations up to approximately four hours, and thus can be used for
accident detection. In the future, we will use the correlation
between traffic data of multi-types to form heterogeneous net-
works to learn more effective representations. Combining self-
supervised contrastive learning, we will find more effective models
to identify anomalous traffic behaviors.

Y. Sun, Y.-C. Lu, K. Fu et al. Journal of King Saud University – Computer and Information Sciences 34 (2022) 4729–4742
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
Acknowledgements

The authors would like to thank the anonymous reviewers for
their careful review and constructive comments. Thank Jason Tao
from DDOT for providing the incident records. This work is sup-
ported by the VT Open Access Subvention Fund of Virginia Tech
Libraries.
References

Ahmed, M.S., Cook, A.R., 1979. Analysis of freeway traffic time-series data by using
Box-Jenkins techniques, no. 722.

Barbagli, B., Bencini, L., Magrini, I., Manes, G., Manes, A., 2011. A real-time traffic
monitoring based on wireless sensor network technologies. In: Proceedings of
7th International Wireless Communications and Mobile Computing Conference,
IWCMC ’11, pp. 820–825.

Battaglia, P., Pascanu, R., Lai, M., Jimenez Rezende, D.,, kavukcuoglu, k., 2016.
Interaction networks for learning about objects, relations and physics. In: D.
Lee, M. Sugiyama, U. Luxburg, I. Guyon, R. Garnett (Eds.), Proceedings of the
30th Advances in Neural Information Processing Systems, NIPS ’16, Curran
Associates Inc. pp. 1–9.

Bendre, S.M., 1989. Masking and swamping effects on tests for multiple outliers in
normal sample. Commun. Stat.- Theory Methods 18 (2), 697–710.

Bruna, J., Zaremba, W., Szlam, A., Lecun, Y., 2014. Spectral networks and locally
connected networks on graphs. In: Proceedings of 2nd International Conference
on Learning Representations, ICLR ’14, pp. 1–14.

Chen, F., Chen, Z., Biswas, S., Lei, S., Ramakrishnan, N., Lu, C.-T., 2020. Graph
convolutional networks with kalman filtering for traffic prediction. In:
Proceedings of the 28th International Conference on Advances in Geographic
Information Systems, SIGSPATIAL ’20, pp. 135–138.

Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,
Bengio, Y., 2014. Learning phrase representations using RNN encoder–decoder
for statistical machine translation. In: Proceedings of the Conference on
Empirical Methods in Natural Language Processing, EMNLP ’14. Association
for Computational Linguistics, pp. 1724–1734.

Chow, A.H., Santacreu, A., Tsapakis, I., Tanasaranond, G., Cheng, T., 2014. Empirical
assessment of urban traffic congestion. J Adv. Transp. 48 (8), 1000–1016.

Coskun, H., Achilles, F., DiPietro, R., Navab, N., Tombari, F., 2017. Long short-term
memory kalman filters: Recurrent neural estimators for pose regularization. In:
Proceedings of the IEEE International Conference on Computer Vision, ICCV ’17.
pp. 5524–5532.

Deb, R., Liew, A.W.-C., 2019. Noisy values detection and correction of traffic accident
data. Inf. Sci. 476, 132–146.

Djenouri, Y., Belhadi, A., Lin, J.C.-W., Djenouri, D., Cano, A., 2019. A survey on urban
traffic anomalies detection algorithms. IEEE Access 7, 12192–12205.

Doersch, C., 2021. Tutorial on variational autoencoders.
Duvenaud, D., Maclaurin, D., Aguilera-Iparraguirre, J., Gómez-Bombarelli, R., Hirzel,

T., Aspuru-Guzik, A., Adams, R.P., 2015. Convolutional networks on graphs for
learning molecular fingerprints. In: Proceedings of the 28th International
Conference on Neural Information Processing Systems. MIT Press, Cambridge,
MA, USA, pp. 2224–2232.

Enders, W. Applied econometric time series.‘‘2nd ed.” New York (US): University of
Alabama.

F.C.D.S. team, 2017. facebook prophet. URL: https://github.com/facebook/prophet..
Guo, S., Lin, Y., Feng, N., Song, C., Wan, H., 2019. Attention based spatial-temporal

graph convolutional networks for traffic flow forecasting. In: Proceedings of
33rd AAAI Conference on Artificial Intelligence, AAAI ’19, pp. 922–929.

Hamed, M.M., Al-Masaeid, H.R., Said, Z.M.B., 1995. Short-term prediction of traffic
volume in urban arterials. J. Transp. Eng. 121 (3), 249–254.

He, Z., Xu, X., Deng, S., 2003. Discovering cluster-based local outliers 24 (9–10),
1641–1650.

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Comput. 9
(8), 1735–1780.

Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T., 2018.
Detecting spacecraft anomalies using lstms and nonparametric dynamic
thresholding, arXiv preprint arXiv:1802.04431. pp. 387–395.

Kipf, T.N., Welling, M., 2017. Semi-supervised classification with graph
convolutional networks. In: Proceedings of 5th International Conference on
Learning Representations, ICLR ’17. pp. 1–14.

Knorr, E.M., Ng, R.T., 1999. Finding intensional knowledge of distance-based
outliers. In: Proceedings of the 25th International Conference on Very Large
Data Bases, VLDB ’99, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
pp. 211–222.
4741
Li, Y., Yu, R., Shahabi, C., Liu, Y., 2017. Diffusion convolutional recurrent neural
network: Data-driven traffic forecasting. In: Proceedings of 5th International
Conference on Learning Representations, ICLR ’18, pp. 1–16.

Liu, J., Guan, W., 2004. A summary of traffic flow forecasting methods. J. Highway
Transp. Res. Develop. 3, 82–85.

Liu, W., Zheng, Y., Chawla, S., Yuan, J., Xing, X., 2011. Discovering spatio-temporal
causal interactions in traffic data streams. In: Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’11. Association for Computing Machinery, New York, NY, USA, pp. 1010–
1018.

Liu, W., Luo, W., Lian, D., Gao, S., 2018. Future frame prediction for anomaly
detection – A new baseline. In: Proceedings of 2018 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR ’18. IEEE Computer Society, pp.
6536–6545.

Liu, F., Xue, S., Wu, J., Zhou, C., Hu, W., Paris, C., Nepal, S., Yang, J., Yu, P.S., 2020. Deep
learning for community detection: Progress, challenges and opportunities. In:
Proceedings of 29th International Joint Conference on Artificial Intelligence,
IJCAI ’20. pp. 1–7.

Lu, W., Cheng, Y., Xiao, C., Chang, S., Huang, S., Liang, B., Huang, T., 2017.
Unsupervised sequential outlier detection with deep architectures. IEEE Trans.
Image Process. 26 (9), 4321–4330.

Lu, G., Ouyang, W., Xu, D., Zhang, X., Gao, Z., Sun, M.-T., 2018. Deep kalman filtering
network for video compression artifact reduction. In: Proceedings of the
European Conference on Computer Vision, ECCV ’18, pp. 568–584.

Ma, X., Wu, J., Xue, S., Yang, J., Zhou, C., Sheng, Q.Z., Xiong, H., Akoglu, L., 2021. A
comprehensive survey on graph anomaly detection with deep learning, pp. 1–
26. arXiv eprint arXiv:2106.07178.

Medico, R., 2020. awesome-ts-anomaly-detection. pp. 135–138.
Megalingam, R.K., Mohan, V., Leons, P., Shooja, R., A.M., 2011. Smart traffic

controller using wireless sensor network for dynamic traffic routing and over
speed detection. In: Proceedings of IEEE Global Humanitarian Technology
Conference, GHTC ’11. pp. 528–533.

Moya, M.M., Koch, M.W., Hostetler, L.D., 1993. One-class classifier networks for
target recognition applications. NASA STI/Recon Technical Report N 93, 24043.

Pang, L.X., Chawla, S., Liu, W., Zheng, Y., 2013. On detection of emerging anomalous
traffic patterns using gps data. Data Knowl. Eng., 357–373

Pang, G., Shen, C., Cao, L., Hengel, A.V.D., 2021. Deep learning for anomaly detection:
A review. ACM Comput. Surveys 54 (2), 1–38.

Rabiner, L.R., 1990. A Tutorial on Hidden Markov Models and Selected Applications
in Speech Recognition. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, pp. 267–296.

Ramaswamy, S., Rastogi, R., Shim, K., 2000. Efficient algorithms for mining outliers
from large data sets. SIGMOD RECORD 29 (2), 427–438.

Riani, M., Atkinson, A.C., Cerioli, A., 2009. Finding an unknown number of
multivariate outliers. J. R. Stats Soc. Ser. B 71 (2), 447–466.

Roth, V., 2005. Outlier detection with one-class kernel fisher discriminants. In:
Proceedings of Advances in Neural Information Processing Systems, NIPS ’05.
pp. 1169–1176.

Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1985. Learning internal representations
by error propagation (Tech. rep.). California Univ San Diego La Jolla Inst for
Cognitive Science.

Schlegl, T., Seeböck, P., Waldstein, S., Schmidt-Erfurth, U., Langs, G., 2017.
Unsupervised anomaly detection with generative adversarial networks to
guide marker discovery, 146–157.

Smola, A., Schölkopf, B., 2004. A tutorial on support vector regression. Stat. Comput.
14 (3), 199–222.

Su, X., Xue, S., Liu, F., Wu, J., Yang, J., Zhou, C., Hu, W., Paris, C., Nepal, S., Jin, D.,
Sheng, Q.Z., Yu, P.S., 2021. A comprehensive survey on community detection
with deep learning, pp. 1–31. arXiv eprint arXiv:2105.12584.

Tian, C., Chan, W.K.V., 2021. Spatial-temporal attention wavenet: A deep
learning framework for traffic prediction considering spatial-temporal
dependencies. IET Intel. Transport Syst. 15 (4), 549–561. https://doi.org/
10.1049/itr2.12044.

Tisljaric, L., Fernandes, S., Caric, T., Gama, J., 2020. Spatiotemporal Traffic Anomaly
Detection on Urban Road Network Using Tensor Decomposition Method, 674–
688.

Valada, A., Burgard, W., 2017. Deep spatiotemporal models for robust
proprioceptive terrain classification. Int. J. Robot. Res. 36 (13–14), 1521–
1539.

van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A.,
Kalchbrenner, N., Senior, A., Kavukcuoglu, K., 2016. Wavenet: A generative
model for raw audio. In: Proceedings of 5th International Conference on
Learning Representations, ICLR ’17. pp. 1–15.

Wu, Z., Pan, S., Long, G., Jiang, J., Zhang, C., 2019. Graph wavenet for deep spatial-
temporal graph modeling. In: Proceedings of the 28th International Joint
Conference on Artificial Intelligence, IJCAI ’19, International Joint Conferences
on Artificial Intelligence Organization, pp. 1907–1913.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y., 2020. A comprehensive
survey on graph neural networks. IEEE Trans. Neural Networks Learn. Syst. 32
(1), 4–24.

Yang, J., Zheng, W.-S., Yang, Q., Chen, Y.-C., Tian, Q., 2020. Spatial-temporal graph
convolutional network for video-based person re-identification. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR
’20, pp. 3289–3299.

Ye, M., Peng, X., Gan, W., Wu, W., Qiao, Y., 2019. Anopcn: Video anomaly detection
via deep predictive coding network. In: Proceedings of 27th ACM International

http://refhub.elsevier.com/S1319-1578(22)00166-5/h0010
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0010
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0010
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0010
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0020
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0020
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0025
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0025
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0025
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0030
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0030
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0030
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0030
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0035
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0035
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0035
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0035
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0035
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0040
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0040
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0050
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0050
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0055
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0055
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0065
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0065
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0065
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0065
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0065
https://github.com/facebook/prophet
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0080
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0080
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0080
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0085
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0085
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0090
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0090
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0095
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0095
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0115
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0115
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0115
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0120
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0120
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0125
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0125
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0125
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0125
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0125
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0130
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0130
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0130
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0130
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0140
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0140
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0140
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0145
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0145
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0145
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0150
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0150
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0150
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0165
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0165
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0170
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0170
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0175
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0175
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0180
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0180
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0180
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0185
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0185
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0190
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0190
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0200
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0200
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0200
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0205
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0205
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0205
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0210
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0210
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0215
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0215
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0215
https://doi.org/10.1049/itr2.12044
https://doi.org/10.1049/itr2.12044
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0225
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0225
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0225
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0230
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0230
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0230
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0240
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0240
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0240
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0240
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0245
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0245
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0245
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0250
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0250
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0250
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0250
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0255
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0255

Y. Sun, Y.-C. Lu, K. Fu et al. Journal of King Saud University – Computer and Information Sciences 34 (2022) 4729–4742
Conference on Multimedia. Association for Computing Machinery, New York,
NY, USA, pp. 1805–1813.

Yu, B., Yin, H., Zhu, Z., 2018. Spatio-temporal graph convolutional networks: A deep
learning framework for traffic forecasting. In: Proceedings of the 27th
International Joint Conference on Artificial Intelligence, IJCAI ’18, International
Joint Conferences on Artificial Intelligence Organization, pp. 3634–3640.
4742
Yu, L., Du, B., Hu, X., Sun, L., Han, L., Lv, W., 2021. Deep spatio-temporal graph
convolutional network for traffic accident prediction. Neurocomputing 423,
135–147.

Zhu, L., Laptev, N., 2017. Deep and confident prediction for time series at uber. In:
Proceedings of the IEEE International Conference on Data Mining Workshops,
ICDMW ’17. pp. 103–110.

http://refhub.elsevier.com/S1319-1578(22)00166-5/h0255
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0255
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0260
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0260
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0260
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0260
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0265
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0265
http://refhub.elsevier.com/S1319-1578(22)00166-5/h0265

	Detecting anomalous traffic behaviors with seasonal deep Kalman filter graph convolutional neural networks
	1 Introduction
	2 Related works
	2.1 Temporal and spatiotemporal modeling
	2.2 Anomaly detection

	3 Problem statement
	3.1 Traffic network
	3.2 Seasonal features
	3.3 Unsupervised prediction-based anomaly detection
	3.3.1 Traffic prediction
	3.3.2 Anomaly detection

	4 Methodology
	4.1 Preliminary
	4.1.1 Time series decomposition
	4.1.2 Kalman filter

	4.2 Seasonal feature extraction
	4.3 S-DKFN model
	4.3.1 GCLSTM
	4.3.2 TCLSTM
	4.3.3 Kalman filter
	4.3.4 Encoder-decoder
	4.3.5 Loss

	4.4 S-DKFN Algorithm
	4.5 Anomaly score and complexity analysis

	5 Experiment
	5.1 Dataset
	5.1.1 METR-LA
	5.1.2 PEMS08

	5.2 Metrics
	5.3 Baselines
	5.4 Parameter settings
	5.5 Anomaly duration analysis
	5.6 Anomaly coverage analysis
	5.7 Case study

	6 Conclusion
	Declaration of Competing Interest
	Acknowledgements
	References

