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ABSTRACT 1 
 2 
The connected vehicles and autonomous vehicles have grasped a lot of public attention 3 
recently. One of the critical functions for connection vehicle applications is to transmit the 4 
roadway MAP data from the Dedicated Short Range Communications (DSRC) roadside 5 
equipment to the on-board unit within vehicles. Collection of the MAP data with traditional 6 
methodology is very tedious and costly. In this research, we developed an algorithm employing 7 
deep learning techniques to extract the lane markings and the stop bar locations from the 8 
existing panoramic LiDAR data and images. Previous research work in this direction includes 9 
model development based on Bayesian inference road lane detection. As the present work  is 10 
one of the very first to use street level LiDAR data, a new algorithm is developed based on color 11 
clustering and deep learning techniques to identify, classify and geolocate pavement markings. 12 
The deep neural network model achieved an accuracy rate of 71.2% in identifying the pavement 13 
markings at intersections. The detected pavement markings can be geolocated to generate GIS 14 
files which can used to generate MAP messages. The research work has shown that the 15 
proposed approach is promising for the lane detection and road sign recognition thus mapping 16 
the city precisely for advancement of connected vehicles.  17 
 18 
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INTRODUCTION  1 
 2 
Connected vehicles have the potential to greatly improve the safety and efficiency of the surface 3 
transportation systems. The connected vehicle technology, which includes Vehicle to 4 
Infrastructure (V2I) and vice versa communication, provides the functionalities to facilitate 5 
autonomous vehicles and driverless operations. In the connected vehicles world, the vehicle 6 
On-Board Units (OBU) exchange real-time information with the infrastructure through the DSRC 7 
radio for navigation, safety and other operations. In order to get prepared for the coming age of 8 
connected vehicle driving, many cities are working towards establishing required infrastructure 9 
for enabling smooth transition for connected vehicles (1). 10 
 11 
The content of communication between the vehicles and the infrastructure includes the Signal 12 
Phasing and Timing (SPAT), Traveler Information Message (TIM), and the MAP message. The 13 
MAP message is a critical component that gives the user information about the geometry of the 14 
intersection (2). A typical MAP message contains the data of lane marking, centerline and stop 15 
bar locations. Traditionally, the MAP messages are generated manually by using the GIS 16 
systems. The methodology requires employing field visits and extensive verifications which is a 17 
slow and costly process (3).  18 
 19 
Various early works based on computer vision techniques were proposed for exploring solutions 20 
to research challenges of such kinds. For instance, kernel based classification algorithms such 21 
as Support Vector Machines (SVM) was raised for road sign recognition (4); other works 22 
proposed models based on Bayesian inference were addressed for road lane detection (5).  23 
 24 
The present research work, a methodology using artificial intelligence algorithms like deep 25 
learning is proposed to automatically extract pavement marking locations to generate MAP 26 
messages for urban areas.  27 
 28 
Street Level LiDAR Data 29 
 30 
Light Detection and Ranging (LiDAR) can be categorized into two classes: the airborne LiDAR 31 
(ALS) and the terrestrial LiDAR (TLS). The dominant type of LiDAR technology utilized in the 32 
studies of urban planning and geomorphology is the topographic LiDAR. The infrared laser light 33 
of this type is emitted from a fixed-wing aircraft. The terrestrial LiDAR techniques, on the other 34 
hand, usually mounted on moving vehicles, provide much more accurate point collection 35 
procedures and can be used to manage facilities, conduct highway and rail surveys. 36 
 37 
Previous studies (6; 7) proposed methods for tropical forest carbon mapping using the airborne 38 
LiDAR technologies. Sun et al. (8) proposed an automated method to create 3D watertight 39 
building models from airborne LiDAR point clouds. Zhang et al. (9) proposed an optimized 40 
segments and connected components classification process, based on the airborne LiDAR 41 
data. Although these airborne LiDAR techniques cover a wide ranges of certain regions, they 42 
fail to collect dense point clouds with high accuracies as constrained by various limitations (8; 43 
9). On the other hand, a few previous works have addressed the feasibility of the terrestrial 44 
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LiDAR in research purposes. The terrestrial LiDAR techniques can facilitate rapid LiDAR 45 
calibration with minimal field data are developed. Recent years have seen the emergence of the 46 
researches that focus on the terrestrial LiDAR data (10). Research areas such as autonomous 47 
driving, especially in the direction of identification objects obscuring lane marks and road 48 
boundaries, exploited the feasibility of the terrestrial LiDAR data (11). The terrestrial LiDAR data 49 
has been used in resolving the problem of ground roughness estimation for road segmentations 50 
(12). Other works have explored the applicability of the terrestrial LiDAR data in curb and berm 51 
detection (13; 14).  52 
 53 
In this research, autoencoders, a deep learning algorithm is used to train and recognize the 54 
pavement markings and lane information. Autoencoder is an unsupervised machine learning 55 
algorithm that is capable of extracting hidden features of given high dimension data (15). It is 56 
constructed under the scheme of the feedforward non-recurrent neural networks. It consists of 57 
an input layer, multiple hidden layers and one output layer. The difference between an 58 
autoencoder and a conventional neural network is that size of the output layer in an 59 
autoencoder is the same as the input layer; on the other hand, the output layer of a conventional 60 
neural network is usually smaller than the input layer. Encoders belong to unsupervised 61 
machine learning family unlike conventional neural networks. The two major components: the 62 
encoder and the decoder:  63 

𝝓: 𝓧 → 𝓕 
𝝍: 𝓕 → 𝓧 

𝐚𝐚𝐚𝐚𝐚𝐚
𝝓,𝝍 

‖𝑿 − (𝝓 ∙ 𝝍)𝑿‖𝟐 
(1) 

 64 
where 𝝓 denotes the encoder, 𝝍 denotes the decoder, and 𝓧, 𝓕 denote the input space of the 65 
data and the hidden features space respectively. Equation 1 is the objective function for 66 
minimizing the loss function. Street level Light Detection and Ranging (LiDAR) data is procured 67 
for this work which provides rich data attributes compared to 2D street level imagery. 68 
 69 
The rest of the paper is organized as follows: the developed algorithm for extracting the street 70 
level data from LiDAR are summarized followed by deep learning technique used to identify the 71 
right pavement marking. The results are discussed in the conclusion section and authors 72 
discussed future work to expand the algorithm to cover other informational signs. 73 
 74 
FEATURE DETECTION AND CLASSIFICATION OF STREET LEVEL DATA  75 
 76 
The street level LiDAR data is collected by Washington DC department of transportation 77 
collected from a third party provider called Cyclomedia Inc1. The LiDAR data is overlapped with 78 
street view imagery providing a unique rich data reflecting real world attributes i.e. (X, Y, Z, R, 79 
G, B).  Figure 1 shows a typical street level LiDAR image. The algorithm developed in the 80 
project can be divided in to three steps. 81 

                                                
1 Cyclomedia: http://www.cyclomedia.com/us/ 
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 82 
Figure 1. LiDAR Data at 4th St NW and Decatur St NW 83 

 84 
Step 1: Preprocessing of LiDAR cloud and Images  85 
 86 
Elevations vary significantly along roadway corridors to accommodate various requirements like 87 
drainage, America Disability Act safety requirements. Figure 2 shows heat map of elevation on 88 
a typical corridor in Washington DC ranging from lowest elevation shown in blue increasing to 89 
red. This presents a challenge in extracting ground LiDAR data that is needed for analysis. To 90 
address this issue, corridors are cut regular intervals depending on gradient to generate ground 91 
level data    92 
 93 

 94 

 95 
Figure 2: Typical Elevation of Street Profile  96 

 97 
Depending on the angle of equipment, shadows and presence of other obstacles like vehicles, 98 
the quality of LiDAR cloud point data may vary at ground level which is the main interest of our 99 
research. Figure 3 shows LiDAR data at an intersection with spare points on one side.  100 



4 

   101 
Figure 3. LiDAR picture generated at 16th and R St NW 102 

 103 
Step 2: Clustering the data and image generation 104 
 105 
In this step, data points are clustered using a distance based clustering method. It was expected 106 
that color aggregation would easily separate out pavement markings from background but in 107 
reality a huge spectrum of colors was found. Color spectrum occurs because of shadows, bright 108 
sunshine and deterioration of infrastructure named Checker Shadow Illusion2. In order to 109 
distinguish the pavement marks from the pavement background, a distance based two-110 
clustering algorithm is used. Due to the extremely large size of the target LiDAR point clouds 111 
data set, it is not computationally efficient for the clustering algorithm to consider the entire data 112 
set as the input. To increase the efficiency, the Random Sample Consensus (RANSAC) 113 
paradigm is utilized with 10% sample rate of the original files. The Random Sample Consensus 114 
(RANSAC) algorithm was first proposed to serve as a solution towards the outlier detection 115 
problems. It estimates the parameters of a mathematical model from a set of observations 116 
which contains outliers in an iterative way. In the proposed coloring clustering task, the intuition 117 
of the RANSAC paradigm (16; 17) is referenced, namely, its capability of generalizing large 118 
noisy data sets with outliers.  119 
 120 
K-mean clustering algorithm 121 
The k-mean clustering algorithm is used on the cloud point with RGB. K-means clustering 122 
algorithm partitions the observations of the data points into k clusters, in which each point 123 
belongs to the cluster with the closest mean point. In the coloring based clustering scenarios, 124 
the data points (pixels) are transformed to the RGB color space, represented by vectors 125 
comprise of red, green, and blue channels of the given pixels. More specifically, given a set of 126 

                                                
2 Checker Shadow Illusion: https://en.wikipedia.org/wiki/Checker_shadow_illusion 
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LiDAR points (pixels)(𝒑1,𝒑2,𝒑3, … ,𝒑𝑁 , ), where each observation of pixel is a 3-dimensional 127 
vector in RGB color space. The k-means clustering algorithm partitions the 𝑁 observations into 128 
𝑘 sets: 𝑺 = {𝑆1, 𝑆2,𝑆3, … , 𝑆𝑘} with regard to minimize the sum of squares within clusters: 129 

𝐚𝐚𝐚𝐚𝐚𝐚
𝑺

��‖𝑿− 𝝁𝒊‖𝟐
𝑿∈𝑺𝒊

𝒌

𝒊=𝟏

 

 

(2) 

where 𝜇𝑖 is the mean of the points in 𝑆𝑖. In our coloring clustering scenario, under the 130 
assumption that the pixels of the pavement markings differ significantly from the other pixel 131 
points, the parameter 𝑘 is set to be 2. Note that the target areas are limited to the surface of the 132 
streets in a small range.  133 
 134 
The mean color calculated in RGB value is represented by a vector with three elements:  135 

𝑪𝒎𝒎𝒎𝒎 = [𝑹𝒎𝒎𝒎𝒎,𝑮𝒎𝒎𝒎𝒎,𝑩𝒎𝒎𝒎𝒎]𝑻 (3) 

the standard deviation is also represented by a vector of three elements:  136 

𝑪𝒔𝒔𝒔 = [𝑹𝒔𝒔𝒔,𝑮𝒔𝒔𝒔,𝑩𝒔𝒔𝒔]𝑻 (4) 

According to the calculated means and standard deviations, the filtering process filters the point 137 
cloud by applying the following threshold with a 3-std:  138 

𝑪𝒓𝒎𝒎𝒓𝒎: [𝑪𝒎𝒎𝒎𝒎 − 𝟑𝑪𝒔𝒔𝒔,𝑪𝒎𝒎𝒎𝒎 + 𝟑𝑪𝒔𝒔𝒔] (5) 

    139 
Figure 4. Clustering based on pixel colors 140 
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Upon clustering the points, DBSCAN (18), a density based spatial clustering algorithm, is 141 
performed on selected points to pinpoint the location and visualize the boundaries of the 142 
pavement marks.  143 
 144 
Figure 5(a) shows clustering of LiDAR data based on coloring scheme. Figure 5(b) shows the 145 
clusters in two dimensions. The clusters then converted to images as shown in Figure 6. These 146 
images will be used as input for deep learning algorithms in step 3 to identify pavement marking 147 
from noise like curbs, cars and other infrastructure.  148 
 149 

 150 
Figure 5(a). Spatial Clustering of LiDAR Data point data 151 

 152 
Figure 5(b). 2D clustering of data generated from 5(a) 153 
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 154 

  155 
Figure 6. Images generated from spatially clustered images 156 

 157 
Step 3: Classification and Plotting of generated data using Deep Learning Techniques  158 
 159 
The present work implemented autoencoder from deep learning techniques. Autoencoder is 160 
known for its promising performance in extracting and identifying features in high dimensional 161 
spatial data. The terrestrial LiDAR data is extremely dense and also has six dimensions which 162 
results in  computationally intensive neural network model so for this work the dimension have 163 
been reduced to three i.e. just position data for training the model. The training data contains 164 
128 road sections in Washington D. C., with an overall size of 18.1 GB. The 16th street NW 165 
corridor between T St NW and Church St NW is selected for testing the developed model. A 166 
total of 900 top view images of various intersections in Washington DC were used for training 167 
the autoencoder mode. Four intersections are selected for testing data generation consisting a 168 
total of 132 labelled data.  169 
 170 
The algorithm is implemented on Ubuntu 14.04 system with a Python version 2.7, MATLAB 171 
2015b3. The LibLAS4 library is used for LiDAR data preprocessing and analysis. Python module 172 
PyProj5 is utilized for cartographic transformations and geodetic computations. The autoencoder 173 
is constructed by using Neural Networks Toolbox provided by MATLAB 2015b. The layer of the 174 
autoencoder consists of 16384 feature nodes from the pavement markings proposal images. 175 
Two layers of encoder are implemented, the detailed configurations for each layers are listed 176 
below and shown in figure 7.   177 

 178 
  Figure 7: Neural Network Model Developed for Classification 179 

                                                
3 MATLAB: http://www.mathworks.com/products/new_products/latest_features.html 
4 LibLAS: http://www.liblas.org/ 
5 PyProj: https://jswhit.github.io/pyproj/ 



8 

RESULT DISCUSSION  180 
 181 
The above autoencoder model has achieved an accuracy of 71.2% in classifying the data to 182 
right category which is plotted on map and shown in Figure 8(a). The green bounding boxes 183 
represent the pavement markings predicted by algorithm and Red boxes show noise recognized 184 
by the model between 16 St NW between N St and T St NW. Figure 8(b)-8(d) shows individual 185 
intersections.  186 
 187 

 188 
Figure 8(a): Detected pavement marking on 16th St  189 

 190 

 191 
Figure 8(b): Detected pavement marking on 16th St and Church St NW   192 

C
hurch St  

C
orcoran St  

R
 St  
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 193 
Figure 8(c): Detected pavement marking on 15th and N St NW   194 

 195 

 196 
Figure 8(d): Detected pavement marking on 16th and Corcoran St NW   197 

 198 
Accuracy rates can be further improved by training the model with more data and especially with 199 
better quality. For example Figure 9 shows an intersection at Church St with low data density 200 
which is reflected in the model prediction inaccuracy in Figure 8(b). Table 1 shows the total area 201 
to be recognized, area with bad data and actual recognized pavement markings by developed 202 
algorithm. It can be seen that good data is available only for approximately 77%.   203 
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 204 
  Figure 9: Intersection level LiDAR data at 16th and Church St NW 205 
 206 

Table 1: Intersection level LiDAR Data Statistics 207 

Total Area Pavement 
markings area (Sq Ft)  

Bad LiDAR data Area (Sq Ft)  Detected Area (Sq Ft)  

9453 2178 5246 

 208 
CONCLUSION AND FUTURE WORK  209 
The research is pioneering work in using street level LiDAR data, as we continue working on 210 
algorithms and procure more data, accuracy will improve. Future work will concentrate on 211 
developing algorithms to generate missing LiDAR data which will improve accuracy. Immediate 212 
further work will focus on detecting road signs, road symbols and also reading the data. The 213 
generated data will be then converted into the MAP message and will be available for public 214 
usage to be implemented in connected vehicle demonstrations. 215 
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