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ABSTRACT 1 

Monitoring traffic flows and establishing performance measures on roadways are critical tasks 2 
for transportation planning and traffic operations. Compared to the freeways, monitoring the 3 
roadway performance on urban arterials is much more challenging due to the nature of more 4 
dynamic traffic assignment patterns and insufficient traffic monitoring mechanisms on arterials. 5 
In the recent years, the emerging social traffic data from the Google/Waze application has 6 
provided a different layer for monitoring the real-time traffic conditions. In this study, the 7 
possibility of using the social traffic data in developing mobility performance measures on urban 8 
arterials is explored. A data mining approach has been developed to retrieve the traffic speed 9 
from the Google/Waze application. The study compares the traffic speed data from Google/Waze 10 
against the traffic data collected from the on-road vehicle detection stations. The preliminary 11 
experiments have shown that the application of social traffic data daily traffic operations and 12 
transportation planning is very promising. 13 

 14 
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INTRODUCTION 1 

Due to the ever-increasing demand of traffic, mitigation of roadway congestion has become more 2 
and more challenging to the transportation researchers and practitioners. Traditionally, people 3 
tackle the congestion issue by investing in infrastructure such as constructing new roads and 4 
bridges to increase the roadway capacity. With advancement of intelligent transportation systems 5 
(ITS), application of high technology has become new strategy for relieving the traffic 6 
congestion. The fundamentals of intelligent transportation systems are collection, processing and 7 
analysis of real-time traffic data for monitoring roadway conditions and improving traffic 8 
management and operations. 9 

 In the recent two decades, a wide range of technologies have been developed for real-10 
time collecting traffic data [1]. The common traffic data detectors deployed on freeways and 11 
urban arterials include induction loop detectors, infrared detectors, radar detectors, video 12 
processing detectors and geo-magnet based detectors. The various detectors are used to generate 13 
vehicle counts, vehicle classifications, and traffic speed and roadway occupancy [2]. Each type 14 
of detectors has its own advantages and disadvantages. For all these detectors, one major 15 
disadvantage is their maintenance which is often costly and complicated. With the advancement 16 
of the wireless communication and the global positioning system (GPS) technology, 17 
transportation researchers ([3], [4]) explored the usage of the GPS technology for collection of 18 
travel time and speed data. More recently, in their explorative work, Valerio at al [5] estimate the 19 
road traffic condition on top of the cellular network infrastructure. As of today, the GPS based 20 
technology has been widely applied for collecting travel time data on freeways.  21 

Based on the traffic data collected on the freeways and arterials, performance measures 22 
can be established to monitor the effectiveness of operational strategies and to assess the success 23 
of achieving operational efficiencies [6]. One common performance measure is Level of Service 24 
(LOS). In the Highway Capacity Manuals (version 2010) [7], highways are categorized into 25 
three different classes which are Class I, Class II and Class III. LOS was established on the basis 26 
of these classes by using different parameters, namely, average travel speed, percentage time 27 
delay and percent of free flow speed. Six Level of Service classes (LOS A to F) are calculated in 28 
that LOS A means free flow and LOS F means forced or breakdown flow. In addition to the 29 
Level of Services, other quantitative indexes can be used as roadway performance measures [8]. 30 
These indexes include: (1) Volume/Capacity ratio; (2) Average travel speed and its reliability; 31 
(3) Duration of Congestion. Roadways of different classes may use different performance 32 
measures to monitor its efficiency.   33 

The Washington D.C. Department of Transportation (DDOT) plans, designs, builds, 34 
maintains and operates the transportation infrastructure within Washington, DC.  Washington, 35 
DC is primarily an arterial system; less than one percent of roadway mileage is freeways.  This 36 
implies that the efficiency of the transportation system is primarily dictated by the reliability and 37 
efficiency of the signal system.   38 

In the recent years, the District Department of Transportation has expanded intelligent 39 
transportation infrastructure for collecting traffic data. Expansion of the data detection system on 40 
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arterials will be very costly and take long time to complete. In addition, maintenance of data 41 
detection stations has been an issue in the District. However, the emerging social traffic data 42 
such as the Waze data has potential in providing a low-cost alternative solution to meeting the 43 
gap.  44 

Waze [9] is a GPS-based geographical navigation application program for smartphones 45 
which provides user-submitted travel times and route details. Through the online map interface, 46 
the drivers can report accidents, traffic jams, speed and police traps. The speed data is derived by 47 
tracking the users’ GPS coordinates on the roads. Different from traditional GPS navigation 48 
software, the Waze data is community-driven, gathering complementary map data and traffic 49 
information from its users. The Waze data includes real-time incident information and travel 50 
times from individual drivers.  Recently the transportation researchers started using the Waze 51 
data for improving incident management. For instance, Fire et. al. [10]   trolled the Waze data 52 
and plotted traffic accident patterns to determine the hot spots in the city. The results of their 53 
research are valuable in optimizing the deployment of police force. Transportation practitioners 54 
in Boston have also explored the possibility of using the Waze data to improve their signal 55 
operations [11]. Derived from Waze, a specific Participatory sensor network (PSN) is proposed 56 
in [12] for sensing traffic conditions and understanding of city dynamics and the urban 57 
behavioral patterns of their inhabitants. Iovanovici et. al. [13] focused on utilizing Waze data to 58 
monitor the state of roads in urban environments over a large period of time to build a traffic 59 
map. Inspired by the Waze driving app, Martelaro et. al. [14] developed a system to measure 60 
driver's situation awareness through real time on-road event questions. In the aspect of privacy 61 
and authenticity, Jeske et. al [15] evaluated the Google and Waze protocol regarding privacy and 62 
authenticity, and proposed a solution that increases the user’s privacy and at the same time 63 
prevents attacks manipulating the traffic analysis. Brown et. al. [16] proposed a protocol for 64 
traffic-update mobile applications that supports the creation of traffic statistics from Waze 65 
reports while protecting the privacy of the users.  As of today, it is estimated that there are nearly 66 
500 thousands Waze users in the Washington DC metropolitan area. With fast-increasing 67 
number of users, the Waze database has accumulated a great amount of traffic data that have 68 
potential in using for the traffic management purpose. 69 

The application of social traffic data for traffic monitoring is consistent to the “Asset Lite” 70 
Concept that has been adopted by DDOT recently. “Asset lite” solutions refer to strategies 71 
geared towards getting to a desired outcome using fewer assets.  DDOT has applied the asset lite 72 
concept for real-time estimation of parking availability information. Similarly, for travel time 73 
information on a transportation system or a segment of roadway, a certain number of assets 74 
based on the desired outcome (say accuracy) are required.  However, if different data elements 75 
are able to be added into the estimation process, there is a likelihood of getting to the same level 76 
of accuracy with fewer assets.  The accuracy (or outcome gap) is filled with other available data 77 
sources.  The cost effectiveness stems from having to procure, install and maintain fewer assets.   78 

This paper looks into the possibility of using social media data to fill the outcome gap. A 79 
comprehensive approach has been developed to analyze the Waze data for real-time traffic 80 
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monitoring. A performance measure was developed based on the Waze data for evaluating the 81 
major arterials in the District. The rest sections of this paper is organized as below: the next 82 
section describes a data mining approach for retrieve the crowdsourced Waze data, followed by a 83 
section for numeric experiment on a major arterial in the District of Columbia. The conclusions 84 
are drawn in the last section.   85 

A DATA-MINING APPROACH FOR RETRIEVING AND ANALYZING WAZE DATA 86 

The crowdsourced Waze data consists of two parts: the Waze traffic incident alerts data and the 87 
Waze traffic jam data. The Waze traffic incident alert data contains all traffic incident 88 
information reported by Waze users through the Waze mobile application. The Waze application 89 
automatically generates a score of reliability, which is from level 1 to level 10, for each incident 90 
alert report. The score increases when more users report the same incident. The Waze traffic jam 91 
data source reports real-time traffic slowdown in specific road segments based on data the 92 
system gather online. Waze generates its traffic jam information by processing the following data 93 
sources: (1) GPS location points sent from user phone; (2) the actual speed vs. average speed; 94 
and (3) free flow speed.  One the map, traffic jams is represented by a color-coded polyline 95 
string which indicates the roadway segment(s) suffering from congestion. A level of congestion 96 
from 0 to 5 is created for each report roadway segments. The level of congestion increases if the 97 
length of polyline string increases. The data types for the Waze traffic jam report is described in 98 
Table 1:  99 

Table 1: Data Types for the Waze Traffic Jam Report 100 

Field Description Features Description 

Time Time when the traffic jam data is 
report 

Length Length of roadway segment 
(specified as polyline) in meters 

Delay Delay of jam compared to free flow 
speed, in seconds 

Line Traffic jam line with starting and 
end points 

Level Traffic congestion level (0 = free 
flow 5 = blocked) 

Speed Current average speed on the 
target segments in meter/second 

 A program was developed to retrieve the Waze congestion data and save it to the 101 
MongoDB [17] database. The retrieved Waze data is stored under a tree structure according to 102 
the MongoDB database schema. Each report in the database has an associated “id” with a sub-103 
node called “updates” storing the history of the records evolution. The raw Waze traffic data is 104 
updated every 5 minutes.    105 

 Let S denote the roadway route for the study. S can be divided into several relatively-106 
short roadway segments si, i=1, 2, …, N. The lengths of the segments are defined to be in the 107 
range of 0.3– 0.8 miles. Let P(d,t) be the set of all Waze polylines for reporting travel speed on 108 
date d at time t. For each Waze polyline p ∈ P(d,t), there is space-mean speed vp(d,t) reported by 109 
the Waze users. Let Qi(d,t) be the subset of P(d,t) in which the Waze polylines overlap the 110 
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roadway segment si. The average speed on roadway segment si on date d at time t, denoted as 111 
vi(d,t), can be estimated as: 112 

𝑣𝑖(𝑑, 𝑡) = �
𝑛𝑛𝑛𝑛           𝑖𝑖 𝑄𝑖(𝑑, 𝑡)𝑖𝑖 𝑒𝑒𝑒𝑡𝑒
∑ 𝑣𝑝(𝑑,𝑡)𝑝∈𝑄𝑖(𝑑,𝑡)

𝑁𝑝(𝑑,𝑡)
            𝑂𝑡ℎ𝑒𝑒𝑒𝑖𝑖𝑒

    Eq (1) 113 

Where 𝑁𝑝(𝑑, 𝑡) is the number of elements in the set Qi(d,t). In a typical scenario, roadway 114 
segment si only overlaps one polyline p, then  𝑣𝑖(𝑑, 𝑡) =  𝑣𝑝(𝑑, 𝑡). 115 

 Three types of days are categorized: regular working days, weekends and special days. 116 
Let Dw be set of all regular working days within the data collection period when the vi(d,t) is not 117 
null. The mean and variance of travel speed at time t on a regular working day can be estimated 118 
in Eqs (2) and (3), respectively: 119 

 120 

𝑉𝑖(𝑡) =  1
𝑁𝑤
∑ 𝑣𝑖(𝑑, 𝑡)𝑑∈𝐷𝑤                                                                          Eq (2) 121 

𝑉𝑉𝑒�𝑉𝑖(𝑡)� =  1
𝑁𝑤−1

 ∑ [𝑣𝑖(𝑑, 𝑡) − 𝑉𝑖(𝑡)]2𝑑∈𝐷𝑤                        Eq (3) 122 

Based on the Waze data, the traffic flow profile for each roadway segment can be calculated by 123 
calculating the mean value and the variance of the average speed at each time point for a regular 124 
working day. It is also useful to calculate the 80th percentile of the segment travel speed  125 
𝑉�𝑖(𝑡) for each segment si  and time t. The 80th percentile of the travel speed is more appropriate 126 
than the average speed in capturing the traffic congestion on arterials where the variances of 127 
travel speeds are big. 128 

With the estimated travel speed for each roadway segment in place, the travel speed for 129 
the entire route can be easily calculated as: 130 

𝑉�(𝑡) = 𝐿/(∑ 𝐿𝑖
𝑉�𝑖(𝑡)𝑖 )                                                               Eq (4) 131 

Where L is the total length of the route and Li is the length of the individual roadway segment si. 132 

ANALYSIS OF WAZE DATA ON TWO CORRIDORS  133 

As described in above sections, the data obtained from Waze is polyline with average speed and 134 
delay attached to each line. The westbound New York Avenue corridor is one the most 135 
congested roadway in the nation’s capital city. The selected corridor is between Bladensburg and 136 
North Capitol St NW.  New York Ave is the only corridor in DC where DDOT has installed 137 
travel time collection system which can be used as ground truth. New York Ave is divided in to 138 
three segments as shown in Figure 1:  139 

a. Bladensburg Rd NE to Kendall St NE 140 
b. Kendall St NE to 4th St NE 141 
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c. 4th St NE to North Capitol St NW  142 

 143 

 Figure 1:  Analysis on New York Avenue (West Bound) and  144 
Rhode Island Avenue 145 

Apart from westbound New York Avenue NW, both the eastbound and westbound of Rhode 146 
Island Avenue corridor  between South Dakota Avenue NE and North Capitol St NW are chosen, 147 
as shown in Figure 1. 148 

Data from each Waze record that overlaps with the above segments is transferred to 149 
corresponding segment. There are totally 3 scenarios the overlap can take place which are shown 150 
in Figure 2 below. In scenario A and B, the average speed of Waze record is mapped to roadway 151 
segment and in scenario C, an average of the speeds is taken and mapped to the segment.   152 

 153 

 154 

Figure 2: Different Scenarios of Waze Records 155 

Bladensburg Rd NE 

4th St NE 

Kendall St NE 

North Capitol St NW 

North Capitol St NW 

South Dakota Ave NE 
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 156 

Space-mean travel speed is used as performance measures on arterials. Based on the Waze data 157 
collected from March, 2015 to June, 2016, the developed approach is applied to calculate the 158 
average travel speed for a regular working day. Table 2 shows the travel speed records on each 159 
road segment in the Waze data. 160 

Table 2: The number of records on each road segment 161 

Street Direction Road Segment #Records 

New York Ave NW Westbound Bladensburg Rd NE to Kendall St NE 1258 
New York Ave NW Westbound Kendall St NE to 4th St NE 2184 
New York Ave NW Westbound 4th St NE to North Capitol St NW 10887 
Rhode Island Ave NE Eastbound North Capitol St NW to South Dakota Ave NE 19236 
Rhode Island Ave NE Westbound South Dakota Ave NE to North Capitol St NW 11058 
 162 

Ground Truth Data 163 

After Waze Data is collected and refined, for each road segment, its travel speed data with the 164 
results from the ground truth data. In this paper, two ground truth data sources are considered, 165 
one is the Vehicle Detection System (VDS), and the other is the InRix System [18]  166 

The VDS system generates the travel time on the entire corridor. The travel speed 𝑉𝑣𝑑𝑣(𝑑, 𝑡) on 167 
date d at time t for road segment 𝑆𝑖 can be estimated as:  168 

   𝑉𝑣𝑑𝑣(𝑑, 𝑡) = 𝐿/𝑇𝑑,𝑡                                                     Eq (5) 169 

where 𝐿 is the length of the corridor and 𝑇𝑑,𝑡is the travel time on the corridor at time interval t on 170 
date d. For a regular working day, the 80th percentile of travel speed is calculated, denoted as 171 
𝑉𝑣𝑑𝑣(𝑡) for the corridor for comparison. Figure 3 shows the comparison results between Waze 172 
travel speeds and VDS travel speeds on New York Avenue NW westbound from Kendall St NE 173 
to 4th St NE. 174 
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175 
  176 

Figure 3: Comparison of Travel Speed on New York Avenue NW westbound between Kendall 177 
St NE and 4th St NE 178 

The traffic pattern on this westbound New York Ave corridor is different from other typical 179 
roadways where there exist double peak periods, one in the morning and another in the afternoon. 180 
Figure 3 shows that vehicles move at free flow speeds on westbound New York Avenue before 181 
6:00am in the morning and after 7:30pm in the evening. From 6:00am to 7:30pm, the pattern of 182 
travel speed data from the Waze application is consistent with that from the VDS system. The 183 
travel speed data from the VDS system is a direct measure of the vehicle movements that can be 184 
used as ground truth.  Compared to the VDS data, the travel speed from the Waze database is 185 
substantially underestimated and suffers from different sampling bias at various time periods. To 186 
mitigate the effect of sampling bias, morning rush hour and afternoon rush hour are considered 187 
separately for developing bias calculation, which is discussed in the next section.  188 

For Rhode Island Avenue, InRix data is procured as DDOT does not have sensor along the 189 
corridor. Similar to New York Ave,  80th percentile of the travel speed is used in this analysis.     190 

Mitigate Sampling Bias  191 

It is noted that in Waze data, compared with congestion period, fewer travel speeds are 192 
reported during free flow period. In statistics, this is issue of sampling bias. In this section, a 193 
comparison will be made between the estimated travel speed based on the Waze data and the 194 
measured ground truth travel speed data from VDS and InRix. Using the VDS and InRix data as 195 
ground truth, a correction factor is calculated to improve the estimation. 196 

Compared to ground truth data, as shown in Figure 3, the travel speed from the Waze 197 
database is substantially underestimated. To mitigate this effect, a correction factor 𝑏  is 198 
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introduced to improve the Waze-derived travel speeds. The new estimates of travel speeds can be 199 
computed as: 200 

 201 
    𝑉�(𝑡) = 𝑉�(𝑡) + 𝑏                                       Eq(6) 202 

Where 𝑉�(𝑡) is the corrected travel speed at time t and 𝑉�(𝑡) is the travel speed from Waze data at 203 
time t. In this paper, the following empirical formula is used to evaluate b: 204 

 205 

   𝑏 =
∑ ( 𝑉𝑔(𝑡)−𝑉�(𝑡)) 𝑡∈𝑇

𝑁𝑇
                         Eq(7) 206 

Where 𝑉𝑔(𝑡) is the ground truth travel speed at time 𝑡, 𝑇 is the set of total time points during a 207 
time period and 𝑁𝑇 is the size of set 𝑇. It is noted that when more people report travel speeds to 208 
Waze, the correction factor b will become smaller.    209 

Analysis of Road Segments on New York Ave NW Westbound 210 

In this section, the Waze-corrected speeds are compared with the ground truth data on road 211 
segment level. The morning rush hour is defined from 6:00am to 9:30am during a typical 212 
working day, while afternoon rush hour is defined from 3:00pm to 7:30 pm. For each rush hour, 213 
the corrected speed at every time point during the rush hour is calculated by applying Eq(6).  214 

For each road segment on New York Ave NW, its correction factor b in the morning rush hour 215 
and afternoon rush hour is calculated respectively, and the Mean-Square-Error (MSE) between 216 
corrected speeds and ground truth is also calculated, as shown in Table 3. 217 

Table 3: Correction factor b and MSE on each road segment 218 

Time Period Road Segment b MSE 
 

6:00am to 9:30am 
WB Bladensburg to Kendall St NE 9.42 

3.76 
WB 4th St NE to Capitol St NW 10.71 

2.79 
WB Kendall St NE to 4th St NE 12.27 

3.57 
 

3:00pm to 7:30pm 
WB Bladensburg to Kendall St NE 11.07 

3.21 
WB 4th St NE to Capitol St NW 11.68 3.02 
WB Kendall St NE to 4th St NE 3.03 

3.39 
 219 

Figure 4 (a) and (b) show the Comparison of Waze-corrected speeds with VDS speeds on New 220 
York Ave NW Westbound from Kendall St NE to 4th St NE. It is noticed that the corrected 221 
speeds fit the ground truth value of travel speeds pretty well.   222 
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 223 

Figure 4 (a) Morning traffic patterns on New York Ave NW Westbound from Kendall St NE 224 
to 4th St NE 225 

 226 

Figure 4 (b) Afternoon traffic patterns on New York Ave NW Westbound from Kendall St NE to 227 
4th St NE 228 

Analysis of Entire Corridors 229 

In this section, the Waze-corrected speeds are compared with the ground truth data on the entire 230 
corridor.  The morning rush hour and afternoon rush hour are considered separately and the 231 
corrected speeds are calculated. For each corridor, its correction factor b in the morning rush 232 
hour and afternoon rush hour is calculated respectively, and the Mean-Square-Error (MSE) 233 
between corrected speeds and ground truth speeds is also calculated, as shown in Table 4. 234 

Table 4: Correction factor b and MSE on each corridor 235 
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Time Period Road Segment b MSE 

 

6:00am to 9:30am 

New York Ave NW Westbound 5.38 1.33 

Rhode Island Ave NE Westbound 19.09 0.81 

Rhode Island Ave NE Eastbound 12.41 1.06 

 

3:00pm to 7:30pm 

New York Ave NW Westbound 9.67 2.19 

Rhode Island Ave NE Westbound 10.62 1.61 

Rhode Island Ave NE Eastbound 10.86 1.08 

 236 

The comparison of the Waze speed data and the VDS data on New York Ave NW Westbound is 237 
shown in Figure 5 (a) and (b). 238 

 239 

    Figure 5 (a) Morning traffic patterns on New York Ave NW Westbound  240 

 241 
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Figure 5 (b) Afternoon traffic patterns on New York Ave NW Westbound  242 

Since the VDS data is not available on Rhode Island Avenue, the InRix data is used for 243 
comparison. The results are shown in Figures 6 (a) and (b): 244 

 245 

Figure 6 (a) Afternoon traffic patterns on Westbound Rhode Island Avenue NE 246 

   247 

 248 

Figure 6 (b) Afternoon traffic patterns on Eastbound Rhode Island Avenue NE 249 

Figure 5 and 6 show that the corrected average speeds fit the ground truth value of traffic speeds 250 
pretty well.  The results of analysis show that the derived speed data from the Waze application 251 
is able to provide additional layer for understanding the traffic patterns and evaluating the 252 
effectiveness of the arterials. 253 
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CONCLUSIONS 254 

Applying the social traffic data to evaluate the effectiveness of roadways is a new concept in 255 
traffic management. The paper explored the possibility of using the Waze data to evaluate the 256 
traffic conditions on roadways in Washington DC. A data-mining approach has been developed 257 
to derive average travel speeds from the crowdsourced Waze database. The results from the 258 
approach were compared with the data from the VDS system and the InRix system on the same 259 
roadways. The analysis has shown the Waze data presents a promising low-cost data source for 260 
understanding the traffic patterns and evaluating roadway effectiveness. Since the average speed 261 
data derived from the Waze application is usually a biased estimate of the true speeds, further 262 
research is needed to improve the accuracy of the estimation. Even though the analysis is 263 
performed on two corridors, the developed approach can be extended to other critical corridors. 264 
As more and more drivers use the Waze application, it is expected the amount of traffic 265 
information from the Waze users will exponentially increases in the coming years. The social 266 
traffic data will have more application in the field of traffic operations and incident management. 267 

 268 

 269 

 270 

 271 
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