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Abstract. Spatial-temporal patterns have been applied in many areas,
such as traffic forecasting, skeleton-based recognition, and so on. In such
areas, researchers can convert the prior knowledge into graphs and com-
bine the latent graph dependencies into original features to get better
representation. However, few works focus on the underlying pattern in
the original feature, and they cannot capture the flexible interaction both
spatially and temporally. What is more, they often ignore the hetero-
geneity in spatial-temporal data. In this paper, we solve this problem by
designing a novel model, Multi-view Cascading Spatial-temporal Graph
Neural Network. Our model has a cascading structure to enhance inter-
action and capture heterogeneity. Also, it takes the differencing orders
of flow data into account to get a better representation and contains
specific coupled graphs designed based on the sliding window technique.
Extensive experiments are conducted on four real-world datasets, demon-
strating that our method achieves state-of-the-art performance and out-
performs other baselines.

Keywords: Traffic forecasting · Multi-view · Spatio-temporal ·
Attention · Graph neural network · Graph Convolutional Network

1 Introduction

With the urban expansion and increasing number of vehicles, intelligent trans-
portation systems are developed to make our trips more efficient and safe. Using
data like traffic flow/speed/density, there are many real-world applications such
as optimal route and estimated arrival time [17,18], abnormal traffic behav-
ior detection [15] and so on. Given the broad applications of traffic data, we
focus on traffic flow forecasting, which is a technology based on the past traf-
fic flow to predict the future traffic flow. It is challenging due to the complex
intra-dependencies (i.e., temporal correlations within one traffic series) and inter-
dependencies (i.e., spatial correlations among huge correlated traffic series) [12]
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generated from different sources such as the different traffic detectors in the
intersections and various vehicles’ data.

Researchers first used the traditional machine learning method to solve prob-
lems, like ARIMA [3]. Then when the outbreak of deep learning, they use Con-
volutional Neural Network (CNN) and some graph-based CNN, get >10% per-
formance improvement compared with machine learning methods. The capstone
work was STGCN [21] in 2017. It achieved better performance because it facil-
itated spatial and temporal dependencies and combined them with the CNN
layers. Then is STSGCN [12], they divide the whole time series data into data
pieces to capture the heterogeneity between different time stamps, designed a
new pattern.

However, there are several disadvantages to the prior models: 1) The graph’s
topology is static and predefined based on the location map. It can not be guar-
anteed as optimal for traffic flow tasks. For example, when we concern with two
nodes, A, B. A, B are big cities on the highway, but it is not connected due to the
long distance. However, there are a great number of tracks to deliver groceries
from A to B. It is difficult to capture this dependency through predefined graphs.
Also, some models use the 0/1 spatial graphs instead of distance graphs. It is not
fair to treat the node pair with a relatively high distance and the one with a low
distance as the same (the distances are under the threshold). 2) The prior models
use an entire network to deal with the entire spatial-temporal data flow. They
could miss some essential dependencies like heterogeneity and homogeneity. For
example, if a car accident happened on the road an hour ago, the current flow
would be lower because the drivers always choose a faster route, not this road,
which is more likely to be jammed. Nevertheless, if the car accident happened
10 h ago, we cannot say whether now it is jammed or not because the road is
probably back to normal. 3) In the aggregation step and final output transfor-
mation step, exist model structure is relatively simple to extract the complete
and higher dimensional information. Our work overcomes these shortages, and
the contributions are as follows:

• We propose a novel spatial-temporal graph neural network to capture local
and global spatial-temporal correlations. We discover that the various differ-
encing orders of original data are additional support for feature representation
in the traffic flow task. Based on that, we build our paralleled modules on
the sliding window technique to find the same or different patterns, instead
of using a single module to deal with the whole time series.

• We also build the hierarchical and temporal cascading structures to keep
long-term dependencies and flexible interactions by learnable parameters to
decide the weight of information to communicate through modules.

• Meanwhile, we developed a delicate graph block to aggregate the graph fea-
tures, which could capture the subtle relationships of features. Extensive
experiments are conducted on four real-world datasets, and the experimental
results show that our model consistently outperforms all the baseline meth-
ods.
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Fig. 1. This is a diagram of the whole model. The bottom color rows represent the
three channels, flow, speed, and acceleration. Then the data is divided into several
windows to feed into each Graph Module. Between layers and between Graph Modules
are cascading connections. After a few Graph Layers, the Attention Module is the final
part of getting the output. (Color figure online)

2 Related Work

2.1 Machine Learning and Convolutional Method

Like K-Nearest Neighbor (KNN) [4], they calculate the center of cluster and
assign each data point to the specific cluster. ARIMA used the differencing
function to find the fit pattern. The derivation of it, SARIMA [16] adds a spe-
cific ability to recognize the seasonal pattern. The machine learning models are
designed by human-set rules and are sensitive to outliers. It is challenging for
them to learn the actual relationship of features. But the deep learning methods
could work well because millions of neurons and kernels could learn the higher
dimensional features. CNN/RNN based models and their derivation could be
transferred to solve time series, such as ConvLSTM [20], ST-LSTM [11], STCNN
[7].

2.2 Graph Method

Graph-based methods could be summed up into three parts. First, constructing
the data into the nodes and finding their neighbors based on the latent rela-
tionship. Second, using the developing method to upgrade the information of
the node. Third, merging the upgraded information and using the aggregation
method to reach the final output. For example, Graph Convolutional Network



608 Z. Liu et al.

Fig. 2. This figure contains key components in our model. (Color figure online)

(GCN) [9] is a derivation of Graph Neural Network (GNN), using the Convo-
lutional Network to get node representation. Recent work like GAT [14], which
introduces attention mechanism into the graph field, and GraphSAGE [6], which
generates node embeddings by sampling and aggregating features.

2.3 Traffic Flow Prediction

For this topic, the deep network could learn higher-dimensional features of data.
AGCRN [1] uses the recurrent network as the main structure to obtain long-
term relationships through time and automatically form a graph based on the
data. STSGCN [12] divides the data into data pieces, takes the heterogeneities in
spatial-temporal dependencies into account. STGODE [5] focuses on Ordinary
Differential Equations to mimic the trajectory of traffic flow. STFGNN [10] is a
work derived from STSGCN, used the Dynamic Time Warping algorithm [2] to
gain a unique temporal graph.

3 Problem Formulation

We denote graph set as G = {V,E,G,D,A}, V is the set of nodes, E is set
of edges, G is a global graph, D is a distance graph, A is set of data-based
graph, A = (A1, A2, ..., AT ). The problem of spatial-temporal forecasting can be
described as: learning a mapping function f which maps the current spatial-
temporal data series X = (Xt−T+1,Xt−T+2, ...,Xt) into the future spatial-
temporal data series Y = (Xt+1,Xt+2, ...,Xt+T ′), where T and T ′ denotes
the length of historical and the target time series to forecast respectively.
X̂ = f(X ,G), X̂ is the model output, we want the X̂ as close to Y as possi-
ble.
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4 Model

The followings are three general characteristics of our model. 1) Differencing
and multi-view: We derive the different orders of original flow data to enrich the
model input. Furthermore, we design three graphs from different views. The first
two are static graphs, which are global and distance graphs. And the third one is
an adaptive graph. It has an independent graph for each data piece and provides
extra hidden patterns for the model. 2) Cascading: The model has two types of
cascading. One is temporal, which transfers the information from the previous
data piece to the current data piece with a weight value, which captures data
heterogeneity by paralleled modules. The other is hierarchical, which transfers
the complete features to the following graph layer with a weight value. 3) In the
aggregation step and final output transformation step, we borrow the idea of
attention [13] to capture both global and local features better.

4.1 Differencing Process

The latent feature could be inconspicuously hidden in the original data. And it
can be a great help for the model to have a better performance. Later in the
ablation study, it was proved. In our opinion, this traffic flow data F ∈ R

N∗T∗1

is not powerful enough to provide the learning features. Here, we borrow the
concept in Physics, using speed and acceleration to express first-order differenc-
ing and second-order differencing information in traffic flow data, as shown in
Fig. 2d). We use S1, S2, S3 to represent the flow, speed, and acceleration chan-
nels, respectively. S1, S2, S3 ∈ R

T∗N∗1. We concatenate all three dimensions
together in the last dimension, S ∈ R

N∗T∗3. In Fig. 1, the three-color row on the
bottom represents the flow, speed, and acceleration channel.

4.2 Graph

Global Graph G. The size of Global Graph is R3N∗3N , here we set the 3 as the
window size, the sliding window goes along the time axis. The diagonal of the
adjacency matrix are three same N × N spatial graphs. For example in Fig. 2
a), the Global Graph contains three timestamps T1, T2, T3, if vi and vj are
connected in the navy blue squares, this pair of nodes is also connected in four
shallow blue squares T1 − T2, T2 − T1, T2 − T3, and T3 − T2.

Gi,j =
{

1, if vi and vj are neighbors
0, otherwise

(1)

Distance Graph D. Even though the global graph gives the connection infor-
mation among nodes, it still lacks the meaning of distance. Here, we provide the
specific value between each connected node, instead of 0/1 in the Global Graph.
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We follow what we did in Global Graph, using the distance between node i and
j, Eij . The size of the Distance Graph is R

3N∗3N , shown as Fig. 2b).

Di,j =
{ σ

Eij
, if Gi,j = 1

0, otherwise
(2)

Adaptive Graph A. Considering the previous track-highway example, we pro-
pose this well-designed graph to capture the hidden patterns. This graph aggre-
gates S1, S2, S3 based on the sliding window strategy. It is a data-driven graph
that learns one unique graph for each window. We use the multiplication among
S1, S2, S3 to emphasize the underlying correlation and to determine how strong
the connection is. Figure 2c) is a diagram of the Adaptive Graph. In Eq. 3.,
the multiplication is to obtain an R

N∗N relevance matrix. The diagonal of the
matrix A is the node similarity of S1, S2, S3 from top to bottom. The side of
this diagonal line is the relevance among them. We take a Softmax on the 3N
dimension.

Ai,j = ST
i ⊗ Sj , Ai,j ∈ R

N∗N , A ∈ R
3N∗3N , i/j ∈ {0, 1, 2} (3)

Mask. We apply a learnable mask and multiply it into the adjacency matrix
to enhance the matrix learning ability and latent feature expression. Here, we
multiply a Global Mask Gmask to a data-driven graph to give the Adaptive
Graph more spatial restriction and let the model learn the underlying relation-
ship between the static graphs and the adaptive graph. Here × represents the
Hadamart product.

G′ = Gmask × G, D′ = Dmask × D, A′ = Gmask × A (4)

4.3 Graph Layer

In the Graph Layer, we capture the hierarchical and temporal dependencies
through the cascading structure. The whole model contains J cascading Graph
Layers. Each Graph Layer contains several paralleled Graph Modules, Fig. 1
provides a general structure. This paralleled structure captures the unique pat-
tern for different data pieces. Before the data was fed into the first Graph
Layer, we first map the input S into higher embedding space S′ ∈ R

N∗T∗C ,
the input of the first Graph Layer L1 = S′. The j-th Graph Layer Lj =
‖(M j

1 ,M j
2 ,M j

3 , ....,M j
T−(j×2)), j ∈ {1, 2, .., J}, ‖ means the concatenation on the

time dimension. The i-th Graph Module M j
i ∈ R

N∗t∗C , here t = 3 is the length
of sliding window. For example, the first Graph Layer has 10 = 12 − (1 × 2)
paralleled Graph Modules.

M j
i+1 = α ∗ M j

i + M j
i+1, Lj+1 = β ∗ AdpAvgPool(Lj) + Lj+1 (5)

To save the long-term information hierarchically and temporally, we combine
the input of the last layer with the current layer to make the final input and add
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the previous Graph Module input to the current one. We add control variables α
and β to control the value. AdpAvgPool is an Adaptive Average Pool to adjust
the tensor shape.

Fig. 3. The diagram of the Graph Block.

4.4 Graph Module and Graph Block

We develop delicate Graph Blocks to aggregate and capture the subtle relation-
ships of features. Figure 3 shows the structure of Graph Block. Each Graph
Module contains B Graph Blocks. In each Graph Block, we have K copied
input, here K = 3, the input of the Graph Module M j

i is the input of the
first Graph Block P 1. These copies are multiplied with masked graphs, respec-
tively. Next, these parts are concatenated together and mapped to a higher
embedding space. Then the feature is divided into K branches on the chan-
nel dimension, {pg′

1 , pg′
2 , pg′

3 , ..., pg′
K} = P g′

, each branch is multiplied by the
sum of other branches, which are normalized by the softmax function. The
output of P 1 is the input of P 2, after B iterations of Eqs. 6 to 7, we get P 1

to PB. By using the MaxPool, we get the output of the Graph Module M j
i ,

which is the input of Graph Module M j+1
i . The input of (j+1)-th Graph Layer

Lj+1 = ‖(M j+1
1 ,M j+1

2 ,M j+1
3 , ....,M j+1

T−(j×2)). g ∈ {1, 2, .., B} means the g-th
Graph Block.

P g′
= W i ⊗ ‖(A′P g,D′P g, G′P g) + bg, (6)

P g+1 =
1

2K

K∑
m

K∑
n�=m

pg′
m ⊗ softmax(pg′

n ) (7)

M j+1
i = MaxPool(P 1, P 2, ..., PB) (8)
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4.5 Attention Module

The Attention Module is designed to replace the simple Fully Connected Layer
to capture the global feature from previous Graph Layers. We got the output of
Graph Layers LJ = H ∈ R

N∗F ′
. Then we map the feature into a higher embed-

ding space. Q:{Q1, Q2, .., Qh}, K:{K1,K2, ..,Kh}, V :{V1, V2, .., Vh}, h is number
of heads, we set h = 12 in following experiments. This manipulation provides
the self-attention [14] value between nodes and lever each node’s value to the

sum value of its neighbor to provide global information.
√

h
F ′′ is normalization

factor. By concatenating the output of h heads, we get the final output. We take
the softmax at the N dimension.

Q = H ⊗ Wq + bq, K = H ⊗ Wk + bk, V = H ⊗ Wv + bv (9)

Ŷi = softmax (

√
h

F ′′ ∗ (QT
i ⊗ Ki )) ⊗ Vi (10)

5 Experiments

5.1 Data Preparation

We use public traffic datasets PEMS03, PEMS04, PEMS07, and PEMS08
released by STSGCN [12]. The gap among time steps is 5 min. The whole day
has 288 points in total. It has flow, occupation, and speed values at every time
step on every location point. In this work, we followed previous work [10,12],
only using the traffic flow value to forecast future traffic flow. More specifically,
we use past 1 h, 12 continuous data to predict future 1 h, 12 continuous data.
The spatial adjacency networks for each dataset is constructed by existing road
network based on connectivity and distance.

5.2 Experiment Settings

The best model on these four datasets consists of J = 4 Graph layers, each
Graph Module contains B = 3 Graph Blocks. The σ in the Distance Graph is
1. Before the input data is fed into the first Graph Layer, the channel has been
increased from 3 to 64, S′ ∈ R

N∗12∗64, N is the number of nodes, it depends on
datasets. In the Graph Block, W i is R

192∗192. In Attention module, Wq and Wk

are R256∗864, Wv is R256∗12. We choose Huber loss [8] as the loss function. To eval-
uate the effectiveness of the proposed model, Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE), and Root Mean Squared Error (RMSE).
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Table 1. Performance evaluation results

Dataset Metric ARIMA [3] STGCN [21] GraphWaveNet [19] STSGCN [12] STGODE [5] STFGNN [10] Our model

PEMS03 MAE 33.51 17.49 19.85 17.48 16.50 16.77 15.88

MAPE (%) 33.78 17.15 19.31 16.78 16.69 16.30 15.77

RMSE 47.59 30.12 32.94 29.21 27.84 28.34 26.81

PEMS04 MAE 33.73 22.70 25.45 21.19 20.84 19.83 19.47

MAPE (%) 24.18 14.59 17.29 13.90 13.77 13.02 12.47

RMSE 48.80 35.55 39.70 33.65 32.82 31.88 31.51

PEMS07 MAE 38.17 25.38 26.85 24.26 22.99 22.07 21.95

MAPE (%) 19.46 11.08 12.12 10.21 10.14 9.21 9.28

RMSE 59.27 38.78 42.78 39.03 37.54 35.80 35.53

PEMS08 MAE 31.09 18.02 19.13 17.13 16.81 16.64 16.49

MAPE (%) 22.73 11.40 12.68 10.96 10.62 10.60 10.43

RMSE 44.32 27.83 31.05 26.80 25.97 26.22 25.73

5.3 Experiment Result

In Table 1, we find that our model outperforms other models on four datasets
with different metrics, except the MAPE in PEMS07, which is slightly larger
than that of STFGNN.

The traditional machine learning method ARIMA does not consider spa-
tial dependency, whereas deep learning models can take advantage of spatial-
temporal information. The relatively poor performance of GraphWaveNet reveals
its struggle because it can not stack its spatial-temporal layers and enlarge recep-
tive fields of 1D CNN concurrently. STGCN repeatedly use ten layers of Graph
Convolution operations to capture the feature, we believe it could cause missing
features and it’s feature extraction part is not so strong compared with attention-
based model. STGODE focuses on a relatively new aspect, the whole model is
built on the ordinary equation function to simulate the time series. Due to the
unique and effective tensor-based manipulation, it reaches a good performance.
Among the deep learning baselines, STSGCN and STFGNN utilize paralleled
modules to model spatial-temporal flow data and capture heterogeneity of tem-
poral information, they outperform other models. But they only concentrate on
localized spatial-temporal correlations and do not focus on global dependencies
enough.

6 Ablation Study

To understand the effectiveness of different techniques in this model, we design
seven models. First, the base is a plain model without any techniques. We then
add them one by one to the model. Then, we tune the parameters to reach their
best performance.

(1) Base: This model only contains the flow channel as an input and then
maps it into three channels. In the Graph Block, it only has one branch, K = 1.
This branch is multiplied by the masked Global Graph, which is the only graph
in this model. Also, it does not have intra-interaction, which is the knowledge
from previous modules or layers. (e.g., The dashed line in Fig. 1) In the output
layer, it uses a simple Fully Connected Layer instead of the Attention Module.
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Fig. 4. The result of Ablation Study.

(2) +S2& S3: Beyond (1), we derive the first-order and second-order differ-
encing of flow data and concatenate them to three channels as input.

(3) +D*: We add the masked Distance Graph and have two branches in the
Graph Block.

(4) +A*: We add the non-masked Adaptive Graph and have three branches
in the Graph Block.

(5) +Mask Constraint: Beyond (4), we multiply the mask of the Global Graph
to the Adaptive Graph to get mask constraint.

(6) +Intra-interaction: We add intra-interaction hierarchically and tempo-
rally, which is knowledge from previous modules or layers.

(7) Our Model: We replace the simple Fully Connected Layer with the Atten-
tion Module.

Figure 4 is the result. We can find out that the various differencing orders
of flow data are additional support for feature representation in the traffic flow
task. One channel of flow data is not so informative to provide learning features.
The first-order and second-order differencing of flow data gives a considerable
performance improvement to the model.

The Distance Graph can only provide limited help compared with the pre-
vious model. However, the Adaptive Graph provides excellent help. Compared
with the static Distance Graph, the adaptive graph find the hidden patterns
inside the feature.

The mask constraint between the Global Mask and the Adaptive Graph
can improve the model’s performance and enhance the matrix learning ability.
Even though the Adaptive Graph success in this model, the guide of spatial
information is still essential. The spatial information comes from the Global
Mask, which contains the real-world location for features. It gives the Adaptive
Graph a rational direction to learn.

The hierarchical and temporal intra-interaction between Graph Layers and
Graph Modules is also necessary for the model. In most metrics, it improves the
performance of this cascading structure. The attention mechanism can obtain
features based on the context, but the simple Fully Connected Layer is not strong
enough.
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7 Conclusion

We propose a novel model that could effectively capture the localized spatial-
temporal correlations and take the underlying physical meaning into account
by the differencing method. Meanwhile, to solve the problems shown in prior
models, we design an adaptive graph for each sliding window, generate a robust
graph feature extraction operation, and enhance the interaction between graph
modules. Extensive experiments on four real-world datasets show that our model
is superior to the existing models. Our proposed model is a general framework
for spatial-temporal network data forecasting. It can be applied in many related
applications.
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