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Abstract

Forecasting citations of scientific patents and publications is a
crucial task for understanding the evolution and development
of technological domains and for foresight into emerging
technologies. By construing citations as a time series, the task
can be cast into the domain of temporal point processes. Most
existing work on forecasting with temporal point processes,
both conventional and neural network-based, only performs
single-step forecasting. In citation forecasting, however, the
more salient goal is n-step forecasting: predicting the ar-
rival time and the technology class of the next n citations.
In this paper, we propose Dynamic Multi-Context Attention
Networks (DMA-Nets), a novel deep learning sequence-to-
sequence (Seq2Seq) model with a novel hierarchical dynamic
attention mechanism for long-term citation forecasting. Ex-
tensive experiments on two real-world datasets demonstrate
that the proposed model learns better representations of con-
ditional dependencies over historical sequences compared to
state-of-the-art counterparts and thus achieves significant per-
formance for citation predictions. The dataset and code have
been made available online.1

Introduction
The evolution of technology is a coupling of prior work with
new innovations in incremental or disruptive fashions. As
such, as a paper or patent receives citations, their frequency
and provenance can serve as a reflection of that evolution-
ary character. Citation-based bibliometrics analysis, such as
g-index (Egghe 2006) and H-index (Hirsch 2005), have be-
come well-accepted standard measures applied to individ-
uals, high-tech companies, and institutions alike. The tech-
nological diversity of scientific documents, such as general-
ity and originality, critical factors for decision-makers, can
be measured via the technology class of the citing docu-
ments (Bessen 2008). Furthermore, patent citation statis-
tics have been widely used for the tasks of technology im-
pact analysis (Jang, Woo, and Lee 2017), patent quality as-
sessment (Bessen 2008) (Lee et al. 2018), and identifying
emerging technologies at an early stage. Citation forecast-
ing is a field of growing importance due to the accelerating
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pace of technological change in increasingly competitive in-
dustrial and academic environments.

Many previous works (Yan et al. 2011; Acuna, Allesina,
and Kording 2012; Yan et al. 2012) regard citation prediction
problems as feature-driven regression tasks. Often, domain-
specific, handcrafted features (e.g., domain keywords, top-
ics, quality indicators, author information) are collected to
formulate a deterministic model to predict the future citation
count. However, these models cannot predict the technolog-
ical categories of citing documents and thus are incapable
of technological diversity assessment. Also, these models
require prior domain knowledge and are hard to extend to
different research areas. The performance of such models
depends heavily on the quality of collected features. But,
in real-world datasets, features like author lists and institu-
tion information (Kim et al. 2014) are often noisy, especially
when considering papers from multiple disciplines. Further-
more, this category of models treats features as an accumu-
lated view over a historical window, and thus ignores crucial
patterns that evolve over time.

Figure 1: The citation chain for “The Essence of Wildlife
Management” from the MAG dataset. The first 4 citations
are shown along the timeline with their MAG ID attached
by vertical line.

To address the above issues, point process based cita-
tion prediction models (Lee et al. 2012; Jang, Woo, and
Lee 2017; Liu et al. 2017) have drawn growing attention
in recent years. As shown in Figure 1, the sequence of ci-
tations that reference a given paper is naturally a time se-
ries. Consequently, it can be modeled as a temporal point
process that modulates the temporal pattern in a series of
points. In theory, the temporal point process is characterized
by a conditional intensity function learned from observing
points along the timeline. Conventional methods concen-



trate on designing a specific parametric form of the intensity
function using heuristic assumptions specific to their appli-
cation (Mishra, Rizoiu, and Xie 2016; Helmstetter and Sor-
nette 2002). For instance, citation forecasting methods (Xiao
et al. 2016; Liu et al. 2017) usually follow the paradigm of
the general self-exciting process (Hawkes 1971) in which in-
tensity spikes whenever a new citation arrives. This feature
is used to simulate that a highly cited paper is more likely
to receive more citations. These conventional methods have
two notable drawbacks: (1) heuristic assumptions might not
be able to reflect complicated temporal dependencies in real
datasets; and, (2) in practice, the complexity of the intensity
function is mathematically limited.

To address the challenges conventional models have in
modeling intensity, more recent approaches use recurrent
neural networks (RNNs) (Du et al. 2016; Mei and Eisner
2017) to approximate more complicated conditional inten-
sity functions without heuristic assumptions or prior knowl-
edge of dataset or application. Most existing RNN-based
models (Wang et al. 2017; Xiao et al. 2019, 2017) have
shown improved performance over conventional methods
on both synthetic data and real-world datasets. RNN-based
temporal point process models can be classified into two
families: intensity-based models and end-to-end models.
Intensity-based models (Wang et al. 2017; Du et al. 2016)
use the neural network to implicitly modulate the condi-
tional intensity function which is then used to obtain the
conditional density function for maximum likelihood esti-
mation and prediction. This group of models is optimized for
observation history but is prone to forecasting error propa-
gation for the task of long-term prediction. The family of
end-to-end models (Ji et al. 2019) combines the process of
representing the intensity function with the process of pre-
diction. The advantage of end-to-end models is that, with
careful design, the model can be further optimized during
the predication phase, instead of only from the observation
sequence.

In this paper, we propose an RNN-based, end-to-end
model for citation forecasting. This model introduces a hi-
erarchical dynamic attention layer which uses two temporal
attention mechanisms to enforce the model’s ability to rep-
resent complicated conditional dependencies in real-world
datasets and allow the model to automatically balance the
learning process from the observation side and prediction
side. Furthermore, the temporal prediction layer guaran-
tees that the predicted citations are monotonically increas-
ing along the time dimension. Specifically, the contributions
and highlights of this paper are:

• Formulating a novel framework to provide long-term ci-
tation predictions in an end-to-end fashion by integrating
the process of learning intensity function representations
and the process of predicting future citations.

• Designing two novel temporal attention mechanisms to
improve the model’s ability to modulate complicated tem-
poral dependencies and to allow the model to dynamically
combine the observation and prediction sides during the
learning process.

• Conducting extensive experiments on two real-world

datasets to demonstrate that our model is capable of cap-
turing the general shape of citation sequences and can
consistently outperform other models for the citation fore-
casting task.

• Curating and releasing two large datasets from the United
States Patent and Trademark Office (USPTO) and Mi-
crosoft Academic Graph (MAG), which can be used for
citation prediction task and generalized point process
task.

Problem Formulation
Let C = {Ci}|C|i=1 be a set of collected citation sequences for
scientific documents (e.g. a set of papers or patents). The ith
sequence is denoted by Ci = {(ti,mi)}|Ci|i=0 where ti and mi

refer to the published date and the technology class of the
ith citation, and the 0th citation is the target document itself.
The citation sequence can also be represented in terms of
the inter-citation duration between two successive citations
Ci = {(τi,mi)}|Ci|i=1 where τi = ti − ti−1 refers to the time
difference between the ith citation and the (i−1)th citation.
These two representations are equivalent. In this paper, we
use inter-citation duration notation because it makes it eas-
ier to constrain the end-to-end model to forecast citations
correctly along the time dimension such that ti+1 ≥ ti.

Given data as described above, our problem is as fol-
lows: for a scientific document, using the first l citations
{(τi,mi)}li=1 as observations, can we forecast the sequence
of the next n citations {(τj ,mj)}l+nj=l+1? When n = 1, the
problem is a one-step forecasting problem, which is sim-
pler since learning the temporal point process depends only
on the observation side and there is no error propagation on
the prediction side. Because predicting only the next cita-
tion does not have much practical value, we focus only on
the task when n > 1. In the case where n > 1, there are
two challenges for the task of forecasting the next n cita-
tions. First, there is a trade-off of learning from the obser-
vation side or from the prediction side. On the one hand,
observations are ground truth but they may be too few to
provide enough information to modulate the temporal point
process. On the other hand, predictions are less trustworthy
but can provide extra information to the model for learning
the temporal point process. Also, errors that occur early in
the predication phase can be propagated into subsequent pre-
dictions. These challenges motivate us to adopt a sequence-
to-sequence structure which takes into account both the ob-
servation side and prediction side during the training.

Models
By considering the arrival of a citation as an instant point on
the timeline, we can study the entire citation sequence as a
point process whose joint density function is represented as

f((τ1,m1), (τ2,m2), . . .) =
∏
i

f (τi,mi|H∗i ) (1)

where the density function at ith step is conditioned by the
information of historical citations up to point i, denoted by
H∗i . In point process theory, this density function is usually



Figure 2: The architecture of DMA-Nets. L1 is the input
layer. L2 is the recurrent representation layer. L3 refers to
the local temporal attention (LTA) layer and L4 to the global
multi-context temporal attention (GMTA) layer. Together,
these comprise the dynamic hierarchical attention layer. L5
is the prediction layer.

learned through the conditional intensity function, which is
used to predict future citations through a generative process.
In this paper, we propose a novel framework that integrates
the task of representing the conditional intensity function
and predicting the arrival time and document class of the
next n citations.

Figure 2 presents the overall encoder-decoder architec-
ture of DMA-Nets where the encoder is supplied with the
sequence of observed citations ζe = {(τi,mi)}li=1 and
the decoder aims to recurrently predict the sequence of the
next n citations ζd = {(τ̂j , m̂j)}l+nj=l+1. The input layer
(L1 in Fig. 2) encodes temporal and category information
into dense vectors. The recurrent representation layer (L2 in
Fig. 2) captures the hidden dependencies of the current cita-
tions over all previous citations. The learned representations
enter the attention layer (L3 and L4 in Fig. 2) which consists
of two modules. The local temporal attention layer compiles
the history dependences between each pair of historical ci-
tations and generates intra-encoder states and intra-decoder
states. Next, on the decoder side, the global temporal atten-
tion layer fuses multiple contexts obtained by attending to
different queries on the information embedded by the inner
states of both encoder and decoder. Finally, the prediction
layer (L5 in Fig 2) makes the time-aware prediction for the
next n citations.

Seq2Seq Structure for Citation Prediction
Given the observation sequence ζe, at each step, the en-
coder aims to encode and to compile the hidden dependen-
cies across observed historical citations, thus generating a
sequence of hidden states he = {he1, . . . ,h

e
l },h

e
i ∈ Rdh .

The calculation of the ith hidden state hei is defined in Equa-
tion 2:

hei = g(aei ,h
e
i−1),aei = femb(τi,mi) (2)

where g is a recurrent unit, such as LSTM (Hochreiter and
Schmidhuber 1997), GRU (Cho et al. 2014), or vanilla RNN,

which captures the dependency structure of the current input
over the hidden state at the previous steps, and femb is the
embedding layer concatenating the embedding of τi and mi

to a demb-dimension dense vector. In particular, for the ith
input (τi,mi), τi is first discretized on year, month, and day,
and then is embedded into Rdτ space, and mi is embedded
into a Rdm space. Likewise, at each step, the decoder takes
as input the previous hidden state and the prediction from
the previous step

hdi = g(adi ,h
d
i−1),adi = femb(τ̂l+i, m̂l+i), (3)

and predicts the waiting time and the document class of next
citation:

τ̂l+i+1, m̂l+i+1 = p(hdi ), (4)
where p(·) is a function that predicts the next citation based
on the current hidden state. In this work we use an LSTM
recurrent unit and employ dτ = dm = 32, demb = dτ +
dm = 64 and dh = 256.

Hierarchical Dynamic Attention Layer
Though recurrent neural networks have been successfully
used in various time series prediction tasks (Du et al. 2016),
the fact that the last hidden state holds the entire memory
of the sequence poses a bottleneck in learning conditional
dependencies across a long sequence of temporal points. As
a result, we propose a hierarchical dynamic attention layer
that explores pairwise temporal dependencies from both lo-
cal and global perspectives and from the viewpoint of both
observations and predictions.

Local Temporal Attention (LTA) Layer In this layer,
we propose a local temporal attention mechanism to en-
hance the modulation of conditional dependencies by allow-
ing the model to access and directly attend to previous hid-
den states. We illustrate the local temporal attention mech-
anism on the encoder. The decoder follows a similar pro-
cess. Let hei be the current hidden state of the encoder and
Hei = [he1; . . . ;hei ] ∈ Rdh×i be the i previous hidden states
available along the time dimension. The local temporal at-
tention mechanism aims to generate a corresponding intra-
encoder attentional hidden state sei for hidden state hei

sei = LTA(hei ,Hei ).
To further enhance the model’s flexibility in represent-
ing conditional temporal dependencies, we use multiple
heads (Vaswani et al. 2017) to calculate attentional hidden
states in different semantic subspaces and concatenate all the
results together as the final sei . The calculation for the kth
head is defined as

sei,k = LTAk(W1
kh

e
i ,W

2
kHei ,W

3
kHei )

= LTAk(~~~ei , H̄ei , H̃ei )

=

i∑
j

wijH̃ei,j =

i∑
j

exp(eij)∑i
k exp(eik)

H̃ei,j ,
(5)

where sei,k ∈ Rdq is an attentional hidden state for head k,
and W1

k, W2
k, W3

k are three learnable dq × dh matrices



which project hei , Hei into three different subspaces ~~~ei ∈
Rdq , H̄ei ∈ Rdq×i, and H̃ei ∈ Rdq×i, wij is normalized eij
measuring the amount of attention~~~ei should pay to H̃ei,j (the
jth column of H̃ei ), and eij is calculated by the following
score function

eij =
(Sigmoid(We~~~ei ))

TH̃ei,j√
dq

,

where We ∈ Rdq×dq is a learnable square matrix. Differ-
ent from the vanilla dot-product score function, a non-linear
projection of ~~~ei is used to avoid biased attention towards
its neighbor hidden states (e.g. ~~~ei ,~~~ei−1). Also, the score is
scaled to avoid values of large magnitude (Vaswani et al.
2017). Finally, sei is obtained by concatenating sei,k for each
head:

sei = LTA(hei ,Hei ) = concat(sei,1, . . . , s
e
i,h)Wo, (6)

where h is the number of heads used, Wo ∈ Rhdq×dh
transforms the hdq-dimension result back to dh-dimension
space. Likewise, the intra-decoder attentional hidden state
sdi can be obtained by sdi = LTA(hdi ,Hdi ), where Hdi =

[hd1; . . . ;hdi ] refers to all currently available hidden states on
the decoder. For this paper, we employ h = 4 and dq = 64.

Global Multi-Context Temporal Attention (GMTA)
Layer On top of the local temporal attention layer, we pro-
pose a global multi-context temporal attention mechanism
with the several considerations in mind. First, the approach
should allow the model to continue examining conditional
temporal dependencies in the decoder phase. That is, in con-
trast to the traditional attention strategy (Luong, Pham, and
Manning 2015) which attends only to encoder states, the
proposed approach should consider the attentional hidden
states on both sides. Second, the approach should let the
model dynamically determine the combination of informa-
tion from the encoder and decoder sides. Third, instead of
learning attention weights based only on the state value, we
argue that the temporal pattern of the temporal point process
in the input should also be a decisive factor.

Here, we illustrate the computation process of attentional
contexts on the encoder side. At the ith step of the decoder,
let sdi be the decoder’s current attentional hidden state. Let
Se = [se1; . . . ; sel ] be the encoder’s l attentional hidden states
and Ae = [ae1; . . . ;ael ] be the encoder’s l inputs. Two con-
texts, ce1i and ce2i , are calculated. Again, we employ the
multi-head strategy to calculate ce1i and ce2i in different se-
mantic subspaces and use the concatenation for the final con-
text. For the k-th head, both contexts are a weighted sum
of projected Se. The difference is that for ce1i,k the attention
weight ee1ij depends on the value of the attentional hidden
states sdi and sej while for ce2i,k the temporal pattern inputs adi
and aej determine the attention weights ee2ij , that is

ee1ij =

(
Qe1
k sdi

)T
Ve1
k sej√

dc1
, ee2ij =

(
Qe2
k adi

)T
Ve2
k aej√

dc2
, (7)

where Qe1
k ,V

e1
k ∈ Rdc1×dh and Qe2

k ,V
e2
k ∈ Rdc2×dh are

learnable matrices for linear projection. Then we have ce1i,k
and ce2i,k calculated as:

ce1i,k =

l∑
j

exp(ee1ij )∑l
k exp(ee1ik )

Ue1
k sej , ce2i,k =

l∑
j

exp(ee2ij )∑l
k exp(ee2ik )

Ue2
k sej ,

(8)
where Ue1

k ∈ Rdc1×dh and Ue2
k ∈ Rdc2×dh . Finally, con-

texts ce1i and ce2i are obtained by concatenating the results
of all heads:

ce1i = GMTAs(sdi ,S
e) = concat(ce1i,1, . . . , c

e2
i,m1)We1,

ce2i = GMTAτ (adi ,Ae,S
e) = concat(ce2i,1, . . . , c

e2
i,m2)We2,

where m1 and m2 are the number of heads to use for
ce1i and ce2i , respectively, and both We1 ∈ Rhdc1×dh and
We2 ∈ Rhdc2×dh are learnable projection matrices. Like-
wise, let Sdi represent all of the decoder’s previous atten-
tional hidden states and Adi all the decoder’s previous in-
puts. At the ith step, the decoder context cd1i and cd2i can
be calculated by GMTAs(sdi ,S

d
i ) and GMTAτ (adi ,Adi ,S

d
i ),

respectively. In this work we employ m1 = 4, dc1 = 64,
m2 = 2 and dc2 = 32.

Prediction Layer
The citation sequence has an implicit constraint that future
citations always come after the most recent citation, that is,
the predicted inter-citation duration should always be non-
negative. Some previous work (Xiao et al. 2016) ignored this
constraint. With this in mind, we design the prediction layer
as below:

ci = concat(ce1i , c
e2
i , c

d1
i , c

d2
i , s

d
i )W

c,

τ̂i+1 = Softplus(Woutci), m̂i+1 = Softmax(ci)
(9)

where Wc ∈ R5dh×dh and Wout ∈ R1×dh . Note that the
prediction is constrained by the Softplus function to enforce
the non-negative requirement.

Parameter Learning
The total loss is the sum of the time prediction loss and the
cross-entry loss for document category prediction:

l+n∑
i=l+1

(∣∣t̂i − ti∣∣− log(mi)
)

=

l+n∑
i=l+1

∣∣∣∣∣∣
i∑

j=l+1

(τ̂j − τj)

∣∣∣∣∣∣−log(mi).

Note that as the model is predicting inter-citation period in-
stead of the citation time, and thus the temporal loss above
is not the absolute pairwise difference between predictions
and ground truth.

For regularization, we use dropout to the output of each
sublayer with a dropout rate of 0.1. For optimization, we
adopted the ADAM (Kingma and Ba 2014) optimizer for
training with learning rate set to 0.0001 and weight decay of
0.0001.



USPTO

Model 80% As Observations 50% As Observations 30% As Observations

MAE RMSE ACC MAE RMSE ACC MAE RMSE ACC

RMTPP 83.0190 138.2183 0.4536 182.5732 271.2538 0.5866 258.9615 370.6494 0.5858
CYAN-RNN 71.8609 124.2318 0.8443 142.6116 221.6332 0.8421 191.9568 283.4559 0.8431
RPP 109.3605 175.8235 0.8206 234.2301 351.2669 0.7232 309.0723 429.7102 0.6837
Seq2Seq 62.0010 108.9615 0.7420 110.4464 176.9894 0.6816 148.8295 223.1447 0.5866
DotSeq2Seq 60.8083 105.7521 0.8191 106.9324 165.6998 0.7372 143.9769 215.8835 0.7561
PC-RNN 56.8930 100.3806 0.8121 98.8260 156.5963 0.7579 132.2665 199.2807 0.7739
DMA-Nets 56.8676 98.3817 0.8570 100.8460 157.6145 0.8513 131.0907 196.7500 0.8444

MAG

Model 80% As Observations 50% As Observations 30% As Observations

MAE RMSE ACC MAE RMSE ACC MAE RMSE ACC

RMTPP 26.2305 38.5251 0.2923 56.1802 85.0525 0.2073 85.8301 118.5709 0.3274
CYAN-RNN 20.3441 30.7344 0.6516 39.8326 56.7323 0.6509 71.8483 98.4990 0.6390
RPP 33.1357 48.2855 0.6658 76.5505 107.7528 0.6087 155.2278 234.0893 0.6027
Seq2Seq 21.6710 30.4907 0.6674 41.5486 57.4757 0.6397 59.8124 78.7138 0.6487
DotSeq2Seq 17.5930 25.9695 0.6320 32.4100 46.0663 0.5900 47.0133 63.1645 0.4987
PC-RNN 20.9865 30.4462 0.6720 38.3954 54.2841 0.6218 56.6671 73.7164 0.6167
DMA-Nets 17.2212 25.5530 0.6647 28.8310 41.7167 0.6547 42.2267 58.3853 0.6425

Table 1: Performance evaluation of our method (DMA-Nets) and peer methods. Timestamp predictions in days are evaluated
using MAE and RMSE and document category predictions are evaluated using accuracy.

Experiments
We compare our DMA-Nets experimentally to state-of-the-
art methods on two large real-world datasets compiled from
the United States Patent and Trademark Office (USPTO) and
the Microsoft Academic Graph (MAG).

Dataset Description and Experiment Setup
Dataset: USPTO is a premier patent database documenting
U.S. patents. We adopted the patent citation collection pub-
lished in (Ji et al. 2019), which consists of 15,000 sequences
with a length within 20 to 100. Each patent has a granted
date and a category. Furthermore, to better validate the
model’s capacity, we extend the original dataset to 25,000
sequences following the same procedure. MAG (Sinha et al.
2015) is a paper database maintained by Microsoft. For each
paper, we construct a citation chain using its publish date
and category from the database. We likewise remove papers
with chains shorter than 20 and trim chains longer than 100,
and then sample 25,000 sequences for the experiment. For
both dataset, we used 17,500 sequences as the training set,
5,000 sequences as the test set, and the remaining 2,500 se-
quences as the validation set. All the datasets used in the
paper are available for download2.

Metrics: Following similar procedures in (Du et al. 2016;
Wang et al. 2017; Xiao et al. 2017; Ji et al. 2019), we use
mean absolute error (MAE) and root mean squared error
(RMSE) as evaluation metrics for citation time predictions,
and accuracy for document category prediction.

2https://github.com/TaoranJ/DMA-Nets

Compared Baselines: We compare DMA-Nets with
state-of-the-art point process baselines including two
intensity-based models and four end-to-end based models:

• RMTPP (Du et al. 2016): RMTPP uses recurrent units
to learn the intensity function for general point process
analysis and is able to predict point arrival time and type
in a sequence.

• CYAN-RNN (Wang et al. 2017): CYAN-RNN uses
GRU-based recurrent units and attention mechanisms to
learn the intensity function for a general information re-
sharing process and can forecast the arrival time and type
of next resharing behavior.

• RPP (Xiao et al. 2017): RPP is similar to RMTPP, but it
uses a fully connected layer to map the embedded hidden
state directly to time and type predictions.

• Seq2Seq (Sutskever, Vinyals, and Le 2014): Seq2Seq
represents a traditional sequence-to-sequence model
which consists of one recurrent representation layer.

• DotSeq2Seq (Luong, Pham, and Manning 2015): Dot-
Seq2Seq represents a Seq2Seq model with a traditional
static attention mechanism. We used a dot-product score
function in the experiments.

• PC-RNN (Ji et al. 2019): PC-RNN is an end-to-end point
process model for patent citation forecasting which is
able to integrate multiple observation sequences and have
a static attention mechanism equipped on the prediction
side. On the USPTO dataset, we used three sequences of
patent citations, assignee citations, and inventor citations.



USPTO

Model 80% As Observations 50% As Observations 30% As Observations

MAE RMSE ACC MAE RMSE ACC MAE RMSE ACC

DMA-Netsg 58.8086 100.1425 0.8496 104.2577 163.2522 0.8303 134.8752 200.0412 0.8401
DMA-Netsl 57.9564 102.1665 0.8539 102.5050 158.4229 0.8480 134.2213 201.2891 0.8455
DMA-Nets 56.8676 98.3817 0.8570 100.8460 157.6145 0.8513 131.0907 196.7500 0.8444

MAG

Model 80% As Observations 50% As Observations 30% As Observations

MAE RMSE ACC MAE RMSE ACC MAE RMSE ACC

DMA-Netsg 17.4309 25.6951 0.6473 30.1178 42.6512 0.6347 44.6062 60.8219 0.6271
DMA-Netsl 17.5243 26.0156 0.6702 30.3576 43.4257 0.6484 44.0911 59.9982 0.6264
DMA-Nets 17.2212 25.5530 0.6647 28.8310 41.7167 0.6547 42.2267 58.3853 0.6425

Table 2: Performance evaluation of variants of DMA-Nets.

On the MAG dataset, the observation side has only paper
citation sequences available.

Performance Comparison
By restricting the length of the observation window to 30%,
50%, and 80% of the entire sequence, we conducted three
groups of experiments to test each model’s performance
on the USPTO dataset and the MAG dataset. In real-world
applications, short observation windows are preferred over
long observation windows. All results are reported in Ta-
ble 1.

Our model consistently outperforms RMTPP, CYAN-
RNN, and RPP for time prediction and category prediction
in all experiments. RMTPP, CYAN-RNN, and RPP deliver
long-term prediction in one-step forecasting fashion. That is,
they modulate the citation process based only on the obser-
vations and then use it as the generator during the prediction
process by directing the ith prediction to the (i+ 1)th input.
In the introduction section, we argued that this type of model
has two major shortcomings: 1) their capacity for modulat-
ing the point process will diminish as the number of avail-
able observations decreases, and 2) they are prone to the ac-
cumulated time prediction error as the number of predictions
made increases. Our observation in Table 1 reinforces these
assumptions. As the observation window shrinks from 80%
to 30%, against the best of these three models, our model’s
MAE improvement increases from 20.86% to 31.71% on the
USPTO dataset and from 15.35% to 41.23% on the MAG
dataset. Similar results are also observed for the RMSE met-
ric. This observation also demonstrates that our model has
a better capacity to modulate the citation process with in-
formation from the prediction side and mitigate error prop-
agation in the time prediction. In terms of document class
prediction, we observed that our model significantly out-
performs RMTPP and RPP and is competitive with CYAN-
RNN. We argue this is because both our model and CYAN-
RNN are empowered by the attention mechanism, which al-
lows the model to look back at previous document categories
during the prediction process.

On both the USPTO and the MAG dataset, our model gen-
erally performs better than Seq2Seq, DotSeq2Seq, and PC-
RNN. These three models all practice the seq2seq structure
while the Seq2Seq model modulates historical dependen-
cies via the recurrent layer and the other two models adopt
both the recurrent and static attention layers to model condi-
tional dependencies. We gained several insights by observ-
ing performance results in Table 1. First, we observed that
seq2seq based models are better at the time prediction task,
which again strengthens our hypothesis that the long-term
prediction is a benefit of the seq2seq structure. Second, as
the observation window shrinks, our model’s improvement
in MAE and RMSE gradually increases in most cases. In-
tuitively, with fewer observations available, forecasting per-
formance relies more heavily on the prediction phase. So we
argue that, unlike other models which can only rely on the
current hidden state or encoder’s history states, our model
has increased performance because the LTA and GMTA lay-
ers allow our model to benefit from modeling historical de-
pendencies on the prediction side (i.e., the area with green
blocks in Fig. 2). Note that even in the USPTO dataset,
where PC-RNN uses three sequences (patent, assignee, and
inventor citation sequences) as input on the encoder side, our
model’s performance is still competitive. Third, we observed
that on the MAG dataset, the Seq2Seq and DotSeq2Seq
model could only achieve competing results on either the
time prediction tasks or the category predictions task. In
contrast, our model’s performance on both time prediction
and category prediction is competitive and balanced. We ar-
gue this is attributed to the flexibility and expression capabil-
ity empowered by the hierarchical dynamic attention layer.

Ablation Study
Global Multi-Context Temporal Attention (GMTA)
Layer Analysis We first analyze the contributions of the
global multi-context temporal attention layer (GMTA). In
this ablation test, we remove the GMTA layer from DMA-
Nets and create one variant, named DMA-Netsg . For DMA-
Netsg , at each step of the decoder, we drop the calculation



Hyper-parameters USPTO MAG

demb dh h dq m1 dc1 m2 dc2 dropout MAE ACC MAE ACC

base 64 256 4 64 4 64 2 32 0.1 56.8676 0.8570 17.2212 0.6647

dh
64 128 4 32 4 32 2 32 0.1 58.3457 0.8516 17.2143 0.6656
64 64 4 16 4 16 2 32 0.1 58.3930 0.8373 17.3194 0.6576

demb
32 256 4 64 4 64 2 16 0.1 57.3704 0.8512 17.1048 0.6681
16 256 4 64 4 64 2 8 0.1 57.7617 0.8536 17.1164 0.6561

h,m1
64 256 8 32 8 32 2 32 0.1 57.5771 0.8521 17.0623 0.6641
64 256 2 128 2 128 2 32 0.1 56.8441 0.8555 17.1831 0.6687

m2 64 256 4 64 4 64 4 16 0.1 57.5239 0.8521 17.0971 0.6675

dropout 64 256 4 64 4 64 2 32 0.3 57.4690 0.8536 17.1240 0.6660

Table 3: Hyper-parameter analysis for DMA-Nets.

of the encoder’s contexts ce1i and ce2i and the decoder’s con-
texts cd1i and cd2i (L4 in Fig. 2) and instead use only the cur-
rent attentional hidden state sdi as the input for the prediction
layer. Consequently, the calculation of the encoder’s atten-
tional hidden states [se1; . . . ; sel ] is also removed. In this vari-
ant, decoder’s states hdi and sdi carry the burden of holding
information of previous states. The performance of DMA-
Netsg is reported in Table 2. As expected, DMA-Nets out-
performs DMA-Netsg . Intuitively, the GMTA layer is most
beneficial in cases where the model relies more on obser-
vations. This is because the GMTA layer provides a global
view of citation sequences and captures the dynamics on
both the observation side and the prediction side. When the
GMTA layer is missing, the prediction side dynamics can be
carried by both the recurrent unit and the local attentional
state but the historical observations can be encoded only by
the RNN backbone. On the USPTO dataset, we observed
that the performance gain brought by the GMTA layer is
most significant when 80% of sequence used as observa-
tions. On the MAG dataset, GMTA layer is most beneficial
when 50% of sequence used as observations.

Local Temporal Attention (LTA) Layer Analysis Next,
we analyze the contributions of the local temporal atten-
tion layer (LTA). We created an ablation named DMA-Netsl
by removing the local temporal attention layer from DMA-
Nets. As a result, on both observation and prediction side,
instead of calculating local attentional hidden states {sei}

l
i=1

and {sdi }
n

i=1 we used the corresponding RNN hidden states
{hei}

l
i=1 and {hdi }

n

i=1 as the input for the subsequent global
multi-context temporal attention (GMTA) layer. The per-
formance of DMA-Netsl is also reported in Table 2. The
fully fledged DMA-Nets outperforms DMA-Netsl on both
datasets which indicates that the LTA layer improves model
performance.

Hyper-parameter Analysis
We investigate the sensitivity of dh, demb, h, m1, m2, and
dropout rate and report the performance of DMA-Nets in
MAE and ACC metrics on the 80% observation setting in

Table 3. We observe that, in general, DMA-Nets is robust to
different hyper-parameter settings. On the MAG dataset, the
performance variation through different settings is insignif-
icant. On the USPTO dataset, it is observed that reducing
the model size dh will decrease the model’s performance on
time prediction task.

Conclusion
In this paper, we present a novel framework for forecasting
citations of scientific publications. On top of the seq2seq ar-
chitecture, this model constructs a hierarchical dynamic at-
tention layer which considers the citation process from both
local and global perspectives and from the viewpoint of both
observations and predictions. To enable the model to rep-
resent interconnected dependencies across observation se-
quences and prediction sequences, we employ a local tem-
poral attention mechanism to allow the model to look back
along the temporal dimension and fuse more complicated
intra-encoder and intra-decoder hidden attentional states.
Additionally, the global multi-context attention layer en-
courages the model to learn the temporal point process from
a global viewpoint by considering not only observations
but also the predictions that have already been made. We
demonstrate the performance improvement of our model on
two real-world datasets collected from USPTO and MAG.
Experimental results demonstrate that our model can con-
sistently outperform state-of-the-art point process modeling
methods for the task of citation forecasting.
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